
1

An Order-Theoretic Analysis of Universe Polymorphism

KUEN-BANG HOU (FAVONIA), University of Minnesota, USA
CARLO ANGIULI, Carnegie Mellon University, USA
REED MULLANIX, University of Minnesota, USA

We present a novel formulation of universe polymorphism in dependent type theory in terms of monads on the
category of strict partial orders, and a novel algebraic structure, displacement algebras, on top of which one can
implement a generalized form of McBride’s “crude but effective stratification” scheme for lightweight universe
polymorphism. We give some examples of exotic but consistent universe hierarchies, and prove that every
universe hierarchy in our sense can be embedded in a displacement algebra and hence implemented via our
generalization of McBride’s scheme. Many of our technical results are mechanized in Agda, and we have an
OCaml library for universe levels based on displacement algebras, for use in proof assistant implementations.

ACM Reference Format:
Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix. 2023. An Order-Theoretic Analysis of Universe
Polymorphism. Proc. ACM Program. Lang. 7, POPL, Article 1 (January 2023), 27 pages.

1 INTRODUCTION
Dependent type theories are popular frameworks for mechanized proofs in which types can be
manipulated as terms. In dependent type theory, a simple way to represent indexed families of
types is to consider functions into a universe type (written Type, Set, 𝔘, etc.) whose elements
are types. Early dependent type theories assumed that the type universe is an element of itself
𝔘 : 𝔘 [Martin-Löf 1971], but this was soon shown by Girard to be inconsistent [Coquand 1986].
Martin-Löf [1975] subsequently considered stratified collections of universes, in which smaller
universes are elements of larger universes but not vice versa. Such universe hierarchies are indexed
by universe levels (often the natural numbers), which are the subject of this paper.
Passing from a single universe to a universe hierarchy solves the consistency problem, but it

results in usability headaches: suddenly, definitions involving universes must be replicated across
many universe levels. To define even something as simple as the polymorphic identity function
∀a.a → a, we must fix the type over which a ranges. Suppose we choose the smallest universe 𝔘0:

id :
∏

𝐴:𝔘0 (𝐴 → 𝐴)

Then we can instantiate id at any element of 𝔘0, such as bool, int, int → int, . . . , but not 𝔘0
itself (or 𝔘0 → 𝔘0, etc.), because we do not have 𝔘0 : 𝔘0! We can define a larger copy of id,

id′ :
∏

𝐴:𝔘1 (𝐴 → 𝐴)

and this can be instantiated at bool, 𝔘0, 𝔘0 → 𝔘0, . . . , but not 𝔘1, ad infinitum.
Many systems address this problem by adopting one of a number of extensions to type theory

that allow users to write universe-polymorphic definitions that can be uniformly instantiated at
various universe levels. There are at least four well-known mechanisms for universe polymorphism:

Authors’ addresses: Kuen-Bang Hou (Favonia), kbh@umn.edu, Department of Computer Science and Engineering, University
of Minnesota, Minneapolis, Minnesota, 55455, USA; Carlo Angiuli, cangiuli@cs.cmu.edu, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, Pennsylvania, 15213, USA; Reed Mullanix, rmullani@umn.edu, Department of Computer Science
and Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.

2023. 2475-1421/2023/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/

1:2 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

Explicit level quantification. Systems such as Agda [The Agda Development Team 2022]
and Lean [de Moura et al. 2015] index universes by a special type/sort of Levels defined as a
join semilattice generated by level variables and the operations zero : Level, suc : Level →
Level, and max : Level → Level → Level satisfying various equations. Users can write
explicitly polymorphic definitions that quantify over levels; in Agda, for example, one writes
id :

∏
ℓ :Level

∏
𝐴:𝔘ℓ

(𝐴 → 𝐴).
Explicit user constraints. InMatita [The HELMTeam 2016], users can declare universes and

impose constraints between them, and a type checker determines whether these constraints
are sufficient. Here is some example code from the Matita library:
universe constraint Type[0] < Type[1].
universe constraint Type[1] < Type[2].

Typical ambiguity. Users of systems with typical ambiguity do not need to specify the levels
of universes; they may innocently pretend that 𝔘 : 𝔘, and their proof assistant will use
constraint solving to determine a consistent assignment of universe levels, or reject the
definition in the rare case that no such assignment exists. Algorithms for typical ambiguity
were originally developed by Huet [1987] and Harper and Pollack [1991] and implemented
in LEGO [The LEGO Team 1999], Coq [Sozeau and Tabareau 2014; The Coq Development
Team 2022], and Idris [Brady 2013] among others.

Crude but effective stratification. McBride has proposed a simple form of universe poly-
morphism in which every judgment is uniformly invariant under incrementing all universe
levels [McBride 2002, 2011]. A displacement operation (−)⇑𝑛 takes in closed terms and raises
all universe levels inside them by a fixed natural number 𝑛. Under this scheme, users can
therefore write apparently non-universe-polymorphic functions such as id :

∏
𝐴:𝔘0 (𝐴 → 𝐴),

and apply them at higher universe levels after the fact. For example, if we want to apply id
to a type not in 𝔘0, such as 𝔘0 itself (an element of 𝔘1), we can displace id by one level:

id⇑1 :
∏

𝐴:𝔘1 (𝐴 → 𝐴)

and proceed from there:
id⇑1 (𝔘0) : 𝔘0 → 𝔘0

In our work on various proof assistant implementations, we have come to appreciate McBride’s
“crude but effective stratification” for its surprising efficacy and simplicity: users can avoid ex-
plicit level quantification, and implementers can avoid solving inequality constraints involving
joins (maximums) or successors of universe levels. This led us to wonder how general McBride’s
mechanism truly is; as this paper will show, it is quite general indeed.

Contributions. Our main contributions are a novel formulation of universe polymorphism in
terms of monads over strict partial orders, and a novel algebraic structure, displacement algebras,
sufficient to operate “crude but effective” universe polymorphism. We then prove that any universe-
polymorphic type theory can be phrased (in an appropriate sense) as a generalized form of “crude
but effective stratification” by choosing a matching displacement algebra.

In Section 2, we present our new monadic description of universe-polymorphic type theory. In
Section 3.1, we introduce our notion of displacement algebra, and formulate our generalization of
“crude but effective stratification”; in Section 3.3 we present a variety of interesting displacement
algebras. In Section 3.4 we construct a faithful functor sending any system of universe polymorphism
to a “crude but effective” displacement system, under mild hypotheses. In Section 4 we discuss
our Agda formalization of many of our technical results, as well as our OCaml library mugen for
universe levels using displacement algebras [RedPRL Development Team 2022a]. We are currently

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:3

using mugen in the experimental proof assistant algaett [RedPRL Development Team 2022b]
under development.

Non-Contributions. There are two important aspects of universe hierarchies that we will not
address in this paper: cumulativity and kinds. A universe hierarchy is cumulative if an element of a
smaller universe can be implicitly coerced to an element of a larger one; i.e. if smaller universes are
subtypes of larger ones. Coercions between universes obey different equations in different systems;
we consider explicit (but strict) coercions that can be considered as an elaboration of cumulativity.
Most proof assistants support cumulativity with the notable exception of Agda, in part because
it supports universe polymorphism outside the prenex fragment. We consider only prenex level
quantification, effectively stratifying levels and terms, which avoids the difficulties Agda faces.
The kind of a universe refers to the structure(s) shared by its elements; for example, one might

consider a universe of strict propositions [Gilbert et al. 2019], types whose elements are all defini-
tionally equal. The universe hierarchy would then be enriched with these universe kinds. In this
paper, we focus only on universe levels because the choice of levels is frequently orthogonal to the
kind system; most type checkers can work with an arbitrary decidable partial order on levels and
perhaps a successor operator, without knowing how levels are represented. We will describe how
kinds may be integrated into our framework in Section 5.1.

2 GENERALIZED UNIVERSE HIERARCHIES
We start with the syntax of dependent type theory with a generalized notion of universe hierarchy.

2.1 Universe-Monomorphic Type Theory
When formulating the syntax of a core dependent type theory with a hierarchy of type universes,
one often indexes the universes by (an external copy of) the natural numbers ℕ. Such a universe
hierarchy is characterized by several key properties:
(1) Elements of a universe 𝐴 : 𝔘𝑖 can be regarded as types, whether directly (“universes à la

Russell”) or via an explicit coercion function El𝑖 (𝐴) (“universes à la Tarski”).
(2) Each universe is closed under (some or all of) the type formers considered in the language:

for example, if 𝐴 : 𝔘𝑖 and 𝐵 : El𝑖 (𝐴) → 𝔘𝑖 then
∏

𝑥 :𝐴𝐵(𝑥) : 𝔘𝑖 .
(3) Each universe is an element of the next universe: 𝔘0 : 𝔘1 : 𝔘2 : To avoid inconsistency,

it is crucial that 𝔘𝑖 is not an element of itself.
(4) Every 𝐴 : 𝔘𝑖 is also an element of 𝔘𝑖+1, either directly (“cumulativity”) or via an explicit

lifting operation ⇑𝑖+1
𝑖
(𝐴) : 𝔘𝑖+1.

For the moment, we are considering a universe-monomorphic system without variable universe
levels, which will not appear until in Section 2.2.

We begin by considering the syntax of 𝐿-monomorphic type theory: a dependent type theory with
a universe hierarchy indexed not by ℕ but an arbitrary (fixed, external) poset (𝐿, ≤𝐿) of universe
level expressions, where properties (3) and (4) must be rephrased in terms of ≤𝐿:
(3′) Whenever ℓ ′ <𝐿 ℓ , we have 𝔘ℓ ′ : 𝔘ℓ .
(4′) Whenever ℓ ′ ≤𝐿 ℓ , if 𝐴 : 𝔘ℓ ′ then ⇑ℓ

ℓ ′ (𝐴) : 𝔘ℓ .
In (3′), <𝐿 is the strict order associated to ≤𝐿 , namely ℓ ′ <𝐿 ℓ when ℓ ′ ≤𝐿 ℓ and ℓ ′ ≠ ℓ . Notably, we
do not require that <𝐿 be well-founded.

Notation 2.1. For a poset (𝐿, ≤𝐿) we write 𝐿⊤ for the poset that adjoins a top element ⊤ to 𝐿: that
is, the set 𝐿

∐{⊤} with the partial order that extends ≤𝐿 with ℓ <𝐿⊤ ⊤ for ℓ ∈ 𝐿.

We present the interesting inference rules of 𝐿-monomorphic type theory in Figure 1 (omitting
standard rules of equality, e.g. congruence and conversion); for brevity, we consider a type theory

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:4 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

Contexts Γ ≔ · | Γ, 𝑥 :𝐴
Types 𝐴, 𝐵 ≔ Elℓ (𝑒) | ⇑ℓ

ℓ ′ (𝐴) |
∏ℓ

𝑥 :𝐴𝐵 | 0ℓ | 𝔘ℓ
ℓ ′

Terms 𝑒, 𝑒′ ≔ 𝑥 | codeℓ (𝐴) | 𝜆(𝑥 :𝐴).𝑒 | 𝑒 (𝑒′) | abort𝑥.𝐴 (𝑒)

· ctx𝐿

Γ ctx𝐿 Γ ⊢𝐿 𝐴 type⊤ 𝑥 ∉ Γ

Γ, 𝑥 :𝐴 ctx𝐿

ℓ ∈ 𝐿 Γ ⊢𝐿 𝑒 : 𝔘⊤
ℓ

Γ ⊢𝐿 Elℓ (𝑒) typeℓ

ℓ ′ ≤𝐿⊤ ℓ Γ ⊢𝐿 𝐴 type
ℓ ′

Γ ⊢𝐿 ⇑ℓ

ℓ ′ (𝐴) typeℓ

Γ ⊢𝐿 𝐴 type
ℓ

Γ ⊢𝐿 ⇑ℓ

ℓ
(𝐴) ≡ 𝐴 type

ℓ

ℓ ′′ ≤𝐿⊤ ℓ ′ ≤𝐿⊤ ℓ Γ ⊢𝐿 𝐴 type
ℓ ′′

Γ ⊢𝐿 ⇑ℓ

ℓ ′ (⇑ℓ ′
ℓ ′′ (𝐴)) ≡ ⇑ℓ

ℓ ′′ (𝐴) typeℓ

Γ ⊢𝐿 𝐴 type
ℓ

Γ, 𝑥 :⇑⊤
ℓ
(𝐴) ⊢𝐿 𝐵 type

ℓ

Γ ⊢𝐿
∏ℓ

𝑥 :𝐴𝐵 type
ℓ

ℓ ′ ≤𝐿⊤ ℓ Γ ⊢𝐿 𝐴 type
ℓ ′ Γ, 𝑥 :⇑⊤

ℓ ′ (𝐴) ⊢𝐿 𝐵 type
ℓ ′

Γ ⊢𝐿 ⇑ℓ

ℓ ′ (
∏ℓ ′

𝑥 :𝐴𝐵) ≡
∏ℓ

𝑥 :⇑ℓ
ℓ ′ (𝐴)⇑

ℓ

ℓ ′ (𝐵) typeℓ

Γ ⊢𝐿 0ℓ type
ℓ

ℓ ′ ≤𝐿⊤ ℓ

Γ ⊢𝐿 ⇑ℓ

ℓ ′ (0ℓ ′) ≡ 0ℓ type
ℓ

ℓ ′ <𝐿⊤ ℓ

Γ ⊢𝐿 𝔘ℓ
ℓ ′ typeℓ

ℓ ′′ <𝐿⊤ ℓ ′ ≤𝐿⊤ ℓ

Γ ⊢𝐿 ⇑ℓ

ℓ ′ (𝔘ℓ ′
ℓ ′′) ≡ 𝔘ℓ

ℓ ′′ typeℓ

Γ ctx𝐿 Γ(𝑥) = 𝐴

Γ ⊢𝐿 𝑥 : 𝐴
ℓ ∈ 𝐿 Γ ⊢𝐿 𝐴 type

ℓ

Γ ⊢𝐿 codeℓ (𝐴) : 𝔘⊤
ℓ

ℓ ∈ 𝐿 Γ ⊢𝐿 𝐴 type
ℓ

Γ ⊢𝐿 Elℓ (codeℓ (𝐴)) ≡ 𝐴 type
ℓ

ℓ ∈ 𝐿 Γ ⊢𝐿 𝑒 : 𝔘⊤
ℓ

Γ ⊢𝐿 𝑒 ≡ codeℓ (Elℓ (𝑒)) : 𝔘⊤
ℓ

Γ, 𝑥 :𝐴 ⊢𝐿 𝑒 : 𝐵
Γ ⊢𝐿 𝜆(𝑥 :𝐴).𝑒 :

∏⊤
𝑥 :𝐴𝐵

Γ ⊢𝐿 𝑒1 :
∏⊤

𝑥 :𝐴𝐵 Γ ⊢𝐿 𝑒2 : 𝐴
Γ ⊢𝐿 𝑒1 (𝑒2) : 𝐵 [𝑥 ↦→ 𝑒2]

Γ, 𝑥 :𝐴 ⊢𝐿 𝑒1 : 𝐵 Γ ⊢𝐿 𝑒2 : 𝐴
Γ ⊢𝐿 (𝜆(𝑥 :𝐴).𝑒1) (𝑒2) ≡ 𝑒1 [𝑥 ↦→ 𝑒2] : 𝐵 [𝑥 ↦→ 𝑒2]

Γ ⊢𝐿 𝑒 :
∏⊤

𝑥 :𝐴𝐵

Γ ⊢𝐿 𝑒 ≡ 𝜆(𝑥 :𝐴).𝑒 (𝑥) : ∏⊤
𝑥 :𝐴𝐵

Γ, 𝑥 :0⊤ ⊢𝐿 𝐴 type⊤ Γ ⊢𝐿 𝑒 : 0⊤

Γ ⊢𝐿 abort𝑥.𝐴 (𝑒) : 𝐴[𝑥 ↦→ 𝑒]

Fig. 1. Selected rules of 𝐿-monomorphic type theory for a poset 𝐿.

with only Π-types, the empty type, and universe types.1 We annotate each judgment with the poset
𝐿 because we will soon need to work with many different choices of 𝐿 at the same time; however,
all the rules of Figure 1 leave 𝐿 fixed.
Notably, we present our universes “à la Coquand” [Coquand 2013, 2019; Gratzer et al. 2020], in

which the type judgment is indexed by either a universe level or ⊤. Here 𝐴 type⊤ corresponds to
the ordinary 𝐴 type judgment (in particular, all types 𝐴 appearing in contexts or to the right of the
colon are𝐴 type⊤), and for ℓ ≠ ⊤ the collection of types𝐴 in𝐴 type

ℓ
is isomorphic to the collection

of elements of 𝔘⊤
ℓ (via Elℓ and codeℓ). We write 𝔘ℓ ′

ℓ for the code for type
ℓ
in type

ℓ ′ , and may omit
the superscript⊤ for brevity. This presentation has the benefit of requiring fewer rules: Π-types and
closure of universes under Π-types are expressed in a single rule, and the Tarski Elℓ and universe
lift 𝔘ℓ ′ → 𝔘ℓ operations are instances of a single lifting operation (⇑⊤

ℓ
and ⇑ℓ

ℓ ′ respectively).
1The empty type is solely for consistency arguments in Section 2.3.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:5

The presuppositions of the judgments in Figure 1 are as follows:
• Γ ⊢𝐿 𝐴 type

ℓ
presupposes ℓ ∈ 𝐿⊤ and Γ ctx𝐿 .

• Γ ⊢𝐿 𝐴 ≡ 𝐵 type
ℓ
presupposes ℓ ∈ 𝐿⊤ and Γ ctx𝐿 .

• Γ ⊢𝐿 𝑒 : 𝐴 presupposes Γ ctx𝐿 and Γ ⊢𝐿 𝐴 type⊤.
• Γ ⊢𝐿 𝑒1 ≡ 𝑒2 : 𝐴 presupposes Γ ctx𝐿 and Γ ⊢𝐿 𝐴 type⊤.

These presuppositions are implicit additional premises to the rules above that we have omitted for
the sake of readability; for example, any rule with a premise or conclusion of the form Γ ⊢𝐿 𝐴 type

ℓ

should be understood as having implicit premises ℓ ∈ 𝐿⊤ and Γ ctx𝐿 . The role of these premises is
to ensure the invariant that whenever Γ ⊢𝐿 𝐴 type

ℓ
is derivable, ℓ ∈ 𝐿⊤ and Γ ctx𝐿 are derivable.

Remark. In Figure 1, we assume that lifts are strictly functorial and commute strictly with type
formers; some type theories omit either or both of these principles for syntactic or semantic reasons. We
include them simply to demonstrate that they pose no issues to our formulation of universe levels in
terms of partial orders. Our use of “universes à la Coquand” is likewise inessential.

Example 2.2 (Natural numbers). Setting 𝐿 = ℕ we recover the standard universe hierarchy, in
which every universe is contained in a larger universe (𝔘𝑖 : 𝔘𝑖+1).

Example 2.3 (Integers). Setting 𝐿 = ℤ we produce a type theory with a non-well-founded
universe hierarchy: every universe is contained in a larger universe and contains a smaller universe
(𝔘𝑖−1 : 𝔘𝑖 : 𝔘𝑖+1). Surprisingly, ℤ-indexed universes have some practical applications. In Section 1,
we discussed how the universe-monomorphic

∏
𝐴:𝔘0 (𝐴 → 𝐴) is not a satisfactory type for id

because it does not let us instantiate𝐴 with a universe. This is true for the usual ℕ-indexed universe
hierarchies because𝔘0 contains no universes; however, in a type theory with aℤ-indexed hierarchy,
we can instantiate 𝐴 with 𝔘−1, avoiding the need for universe polymorphism in this example!

One could also consider the opposite poset of Example 2.2, namely 𝐿 = ℤ≤0, a non-well-founded
hierarchy in which every universe contains a smaller one (𝔘𝑖−1 : 𝔘𝑖).

Example 2.4 (Rationals). Setting 𝐿 = ℚ we produce a type theory in which between any two
universes there is a third universe (𝔘𝑖 : 𝔘(𝑖+𝑗)/2 : 𝔘𝑗). As in Example 2.3, rational levels allow us to
avoid some instances of universe polymorphism: if we have a term with the universe-polymorphic
type

∏
𝐴:𝔘ℓ

∏
𝐵:𝔘ℓ ′ . . . for any levels ℓ ′ > ℓ , it is equally general in a ℚ-indexed hierarchy to assign

the monomorphic type
∏

𝐴:𝔘0

∏
𝐵:𝔘1 . . . because arbitrarily many universes fit between 𝔘0 and 𝔘1.

ℕ-indexed universe hierarchies are usually formulated with the successor operation 𝔘𝑖 : 𝔘𝑖+1
rather than 𝔘𝑖 : 𝔘𝑗 for 𝑖 < 𝑗 ; the former infers the most general type of the universe code 𝔘𝑖 ,
whereas the latter checks the term 𝔘𝑖 against the type 𝔘𝑗 . However, not all posets have a notion of
successor, e.g. Example 2.4 above. Our rule must therefore be stated using the strict order <𝐿:

standard
ℓ ∈ ℕ

Γ ⊢ℕ 𝔘ℓ typeℓ+1

our rule
ℓ ′ <𝐿⊤ ℓ

Γ ⊢𝐿 𝔘ℓ ′ typeℓ

Derivations in 𝐿-monomorphic type theory depend on 𝐿 only via ℓ, ℓ ′ ∈ 𝐿 and the relations
ℓ ′ <𝐿 ℓ and ℓ ′ ≤𝐿 ℓ . Therefore, any function 𝐿 → 𝐿′ that preserves ℓ ′ <𝐿 ℓ (and thus also ℓ ′ ≤𝐿 ℓ)
induces a transformation of derivations, judgments, and terms from 𝐿-monomorphic type theory
into derivations, judgments, and terms in 𝐿′-monomorphic type theory. More precisely:

Definition 2.5. SOrd is the category of posets with <-preserving maps: functions 𝜎 : 𝐿 → 𝐿′

such that 𝑥 <𝐿 𝑦 =⇒ 𝜎 (𝑥) <𝐿′ 𝜎 (𝑦).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:6 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

Remark. A <-preserving map need not be a monomorphism (need not reflect equality), because it
could identify unrelated points. For any poset 𝐿, the map 𝐿 ⨿ 𝐿 → 𝐿 that merges two copies of 𝐿 into a
single copy of 𝐿 is not injective but nevertheless preserves the strict order.

Notation 2.6. 𝐿-monomorphic type theory is functorial in 𝐿 in the following sense. Let 𝜎 : 𝐿 → 𝐿′

in SOrd; we write (−)[𝜎] for the level replacement function that maps judgments, derivations, con-
texts, types, and terms of 𝐿-monomorphic type theory to corresponding notions in 𝐿′-monomorphic
type theory by sending levels ℓ ∈ 𝐿 to 𝜎 (ℓ) ∈ 𝐿′. For example, if J is a judgment in 𝐿-monomorphic
type theory, J [𝜎] is a judgment in 𝐿′-monomorphic type theory.

Lemma 2.7. Let 𝜎 : 𝐿 → 𝐿′ in SOrd. If a judgment J is derivable in 𝐿-monomorphic type theory,
then the judgment J [𝜎] is derivable in 𝐿′-monomorphic type theory.

Proof. By induction on derivations of J . □

Lemma 2.8. Let 𝜎 : 𝐿 → 𝐿′ be a full2 monomorphism in SOrd. Then a judgment J is derivable in
𝐿-monomorphic type theory if and only if J [𝜎] is derivable in 𝐿′-monomorphic type theory.

Proof. By induction on derivations of J . □

2.2 Universe-Polymorphic Type Theory
The essence of universe polymorphism is the ability to consider variable universe levels 𝛼, 𝛽 that
can be instantiated with concrete universe levels (such as natural numbers) or, depending on the
system, other universe level expressions such as max(𝛼, 𝛽) + 1. In short, each level context Δ gives
rise to a universe hierarchyH(Δ) of level expressions in context Δ, and thus aH(Δ)-monomorphic
type theory (where the choice of H determines the valid expressions); substitutions between level
contexts induce maps between monomorphic type theories (Lemma 2.7), and the collection of these
type theories assembles into what we will call H -polymorphic type theory.
What conditions are needed onH to realize this idea? First, the level expressionsH(Δ) must

form a poset; traditionally Δ is a discrete poset (i.e. a set of unrelated level variables), but in our
setting it is more natural to allow Δ to be any poset, such as 𝛼, 𝛽, 𝛼 < 𝛽 (a context of two level
variables with a strict inequality between them). H should preserve not only ≤ but also strict
orders <; thusH is a functor SOrd → SOrd.
How do judgments at different level contexts interact? H -polymorphic judgments in level

context Δ correspond toH(Δ)-monomorphic judgments; analogously to ordinary substitutions,
level substitutions from Δ to Δ′ send level variables in Δ to level expressions in H(Δ′). Thus to
transfer judgments from level context Δ (H(Δ)-monomorphic type theory) to Δ′ using Lemma 2.7,
we must lift maps Δ → H(Δ′) to H(Δ) → H(Δ′). Combined with the requirement that level
variables embed into level expressions (Δ → H(Δ)), this amounts to H being a monad:

Definition 2.9. A hierarchy theory (H , 𝜂, 𝜇) is a monad on SOrd.

Definition 2.10. Let (H , 𝜂, 𝜇) be a hierarchy theory, anH -algebra is a pair of a poset 𝐿 and a map
Eval𝐿 : H(𝐿) → 𝐿 in SOrd that commutes with 𝜂 and 𝜇 as follows:

𝐿 H(𝐿)

𝐿

1𝐿

𝜂𝐿

Eval𝐿

H(H(𝐿)) H (𝐿)

H (𝐿) 𝐿
Eval𝐿

H(Eval𝐿)

Eval𝐿𝜇𝐿

2Here we mean that 𝜎 is full as a functor 𝐿 → 𝐿′ between thin categories, i.e. that if 𝜎 (ℓ ′) ≤𝐿′ 𝜎 (ℓ) then ℓ ′ ≤𝐿 ℓ .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:7

Definition 2.11. For any hierarchy theory (H , 𝜂, 𝜇), we write SOrdH for the category of H -
algebras (i.e. the Eilenberg–Moore category of H). The morphisms between two H -algebras
(𝐿, Eval𝐿) and (𝐿′, Eval𝐿′) are maps 𝜎 : 𝐿 → 𝐿′ that commute with the algebras:

H(𝐿) H (𝐿′)

𝐿 𝐿′

Eval𝐿

𝜎

H(𝜎)

Eval𝐿′

The Kleisli category is the full subcategory of the Eilenberg–Moore category SOrdH induced
by free H -algebras (H (Δ), 𝜇Δ). Although we will restrict our attention to free H -algebras, for
technical convenience we will nevertheless work with the Eilenberg–Moore category rather than
the Kleisli category ofH , because composition in the former coincides with composition in the
base category SOrd, whereas composition in the Kleisli category is usually defined differently.

Notation 2.12. Let (H , 𝜂, 𝜇) be a hierarchy theory. We write 𝐹H (Δ) = (H (Δ), 𝜇Δ) for the free
H -algebra functor SOrd → SOrdH and𝑈 H (Δ, EvalΔ) = Δ for the forgetful functor SOrdH → SOrd.
The superscripts H in 𝐹H and𝑈 H may be omitted when they are clear from the context.

Notation 2.13. We write |−| for the underlying carrier object of an algebra. For example, the
underlying object of an H -algebra is a poset.

The monadic structure indeed captures the expected substitution structure: an alternative way
to present monads that is popular in Haskell involves “return” (the unit 𝜂) and “bind” (which is
𝜇 ◦ H (−)); the return : Δ → H(Δ) stipulates that level variables are universe level expressions,
and the bind : H(Δ) → (Δ → H(Ξ)) → H(Ξ) is the lifting of substitutions to functions between
expressions. The monadic laws express the functionality and naturality of variable inclusion and
substitution. The fact that the domain ofH is SOrd rather than Set allows level contexts to specify
(strict) inequalities, similarly toMatita. Therefore, Definition 2.9 precisely captures what we want.

There is one final subtlety before we present the syntax ofH -polymorphic type theory (for a
fixed hierarchy theoryH). Recall that in functional programming languages, one can understand
prenex type polymorphism as a way of “summarizing” some or all of a top-level definition’s possible
types. For instance, assigning the type ∀a.a → a to id = 𝜆x.x expresses that the definiens of id
can be typed a → a for any a. A simple-minded but inefficient way to use id at many different
types would be to replace each use of id with 𝜆x.x during type checking; with polymorphic types,
we can instead determine a suitable instantiation of a → a at each use site of id.

We can likewise understand universe polymorphism as amechanism for summarizing the possible
universe level assignments of a top-level definition in dependent type theory. Rather than adding
level quantification as a type former, we parametrize our judgments by an additional context of
top-level definitions, the signature Σ sigH (Figure 2). Unlike the ordinary typing context Δ ⊢H Γ ctx
whose declarations 𝑥𝑖 :𝐴𝑖 all take place at the same level context Δ, every declaration 𝜍𝑖∼𝐴𝑖@Δ𝑖 in
Σ is annotated with its own level context Δ𝑖 .3 This allows each top-level definition to record its
own set of level variables and level constraints; whenever a top-level declaration 𝜍𝑖∼𝐴𝑖@Δ𝑖 is used
by a term in level context Δ, it is under an explicit level substitution 𝜍{𝜎} that instantiates Δ𝑖 at Δ.

Remark. Our signatures play a similar role to the principal schematic, generic definitional contexts
of Harper and Pollack [1991], with the exception that we do not record the definiens of each 𝜍𝑖 . Although
3The notation 𝜍𝑖∼𝐴𝑖@Δ𝑖 is inspired by modal type theories where@ indicates themode of a type; however, our development
departs from modal type theory for reasons to be explained shortly.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:8 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

the intended purpose of our signatures is to record top-level definitions, our formulation of universe
polymorphism does not require access to definitions—indeed, as discussed above, it can be seen as a
mechanism for avoiding the need to expand definitions. (Conversion checking may require access to
definitions due to type dependency, but this is orthogonal to universe-polymorphic type checking.)

Remark. One alternative to signatures would be to annotate ordinary variables in Γ with differing
level contexts, in the style of multimodal type theory [Gratzer et al. 2020] but with level contexts
playing the role of modes; thus Γ would subsume the need for signatures. Our formulation more closely
matches what is used in practice; in particular, we do not wish to consider Π-types whose domains
and codomains live at different universe hierarchies. Furthermore, we want explicit substitutions on
types 𝐴{𝜎} to judgmentally behave as ordinary substitutions 𝐴[𝜎] (e.g. (𝔘𝑖){𝑖 ↦→ 0} ≡ 𝔘0), which
in multimodal type theory would correspond to a modality that commutes strictly with every type
former. Such equations disrupt the adjunction between modal types and modal structure in contexts.

The judgments of H -polymorphic type theory are as follows:
• Σ sigH .
• Δ ⊢Σ

H Γ ctx, presupposing Δ : SOrd and Σ sigH .
• Δ; Γ ⊢Σ

H 𝐴 type
ℓ
, presupposing Δ : SOrd, Σ sigH , Δ ⊢Σ

H Γ ctx, and ℓ ∈ H (Δ)⊤.
• Δ; Γ ⊢Σ

H 𝐴 ≡ 𝐵 type
ℓ
, presupposing as above, Δ; Γ ⊢Σ

H 𝐴 type
ℓ
, and Δ; Γ ⊢Σ

H 𝐵 type
ℓ
.

• Δ; Γ ⊢Σ
H 𝑒 : 𝐴, presupposing Δ : SOrd, Σ sigH , Δ ⊢Σ

H Γ ctx, and Δ; Γ ⊢Σ
H 𝐴 type⊤.

• Δ; Γ ⊢Σ
H 𝑒1 ≡ 𝑒2 : 𝐴, presupposing as above, Δ; Γ ⊢Σ

H 𝑒1 : 𝐴, and Δ; Γ ⊢Σ
H 𝑒2 : 𝐴.

The bulk of the rules for H -polymorphic type theory are identical to the rules for H(Δ)-
monomorphic type theory (Figure 1) where Δ is the current level context. For instance:

ℓ ′ <H(Δ)⊤ ℓ

Δ; Γ ⊢Σ
H 𝔘ℓ

ℓ ′ typeℓ

ℓ ′ ≤H(Δ)⊤ ℓ Δ; Γ ⊢Σ
H 𝐴 type

ℓ ′

Δ; Γ ⊢Σ
H ⇑ℓ

ℓ ′ (𝐴) typeℓ
Judgments at different level contexts Δ,Ξ are related by level substitutions 𝜎 , which are mor-

phisms between the free H -algebras 𝐹H (Δ), 𝐹H (Ξ) on those contexts:

Δ; Γ ⊢Σ
H 𝐴 type

ℓ
𝜎 ∈ SOrdH (𝐹H (Δ), 𝐹H (Ξ))

Ξ; Γ [𝜎] ⊢Σ
H 𝐴[𝜎] type

𝜎 (ℓ)

Put simply, such level substitutions 𝜎 ∈ SOrdH (𝐹H (Δ), 𝐹H (Ξ)) send level variables of Δ to level
expressions inH(Ξ). This is because algebra morphisms out of free monad algebras are determined
by their behavior on generators: from anyH -algebra morphism 𝜎 : 𝐹H (Δ) → 𝐿, we can construct a
map 𝜎 : Δ → |𝐿 | = 𝜎 ◦𝜂Δ. Conversely, given 𝜎 : Δ → |𝐿 |, we can construct anH -algebra morphism
𝜎 = Eval𝐿 ◦ H (𝜎). We thus have an isomorphism between H -algebra morphisms 𝐹H (Δ) → 𝐿 and
SOrd-morphisms Δ → |𝐿 |, as summarized in the diagram below:

H(H(Δ)) H (|𝐿 |)

H (Δ) |𝐿 |

Δ

H(𝜎)

𝜇Δ Eval𝐿H(𝜎)

𝜎

𝜂Δ
𝜎

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:9

Signatures Σ ≔ · | Σ, 𝜍∼𝐴@Δ

Terms 𝑒 ≔ . . . | 𝜍{𝜎}

· sigH

Σ sigH Δ′; · ⊢Σ
H 𝐴 type⊤ 𝜍 ∉ Σ

Σ, 𝜍∼𝐴@Δ′ sigH

Σ(𝜍) = 𝐴@Δ′ 𝜎 ∈ SOrdH (𝐹 (Δ′), 𝐹 (Δ))
Δ; Γ ⊢Σ

H 𝜍{𝜎} : 𝐴[𝜎]

(𝜍{𝜎}) [𝛿] ≔ 𝜍{𝛿 ◦ 𝜎}

Fig. 2. Rules for signatures (top-level definitions) inH -polymorphic type theory.

The remaining rules of H -polymorphic type theory (in Figure 2) govern signatures: as we have
already discussed, signatures Σ are contexts in which the type of each variable 𝜍 is at a different
level context Δ, and therefore the “variable rule” for 𝜍 builds in an explicit level substitution 𝜎 .

Remark. Mathematically, much of our theory remains sensible if we consider non-free H -algebras,
corresponding to level substitutions defined to map non-variable expressions to other expressions, such
as 𝛼 + 2 ↦→ 𝛽 + 42. In addition to being semantically unusual, we believe such substitutions would be
(in general) inefficient in practice. On the other hand, such a generalization allows us to consider level
contexts with strict inequalities between arbitrary level expressions, which seems potentially useful.

Example 2.14 (Traditional level polymorphism). A simple universe-polymorphic type theory,
with level variables 𝛼, 𝛽, . . . , concrete universes indexed by ℕ, and no other level expressions, is
H -polymorphic type theory for the Either monadH = Either ℕ. The intuition is that a level is
either a variable or a concrete level (“error code”), and level substitutions (monadic computations)
can send variables to either variables or concrete levels, but can never affect concrete levels. Writing
𝜄𝑖 : 𝐿𝑖 → 𝐿0 ⨿ 𝐿1 for the 𝑖th coproduct injection:

H(Δ) ≔ Δ ⨿ ℕ 𝜂Δ (𝛼) ≔ 𝜄0 (𝛼)
H (𝑓) (𝜄0 (𝛼)) ≔ 𝜄0 (𝑓 (𝛼)) 𝜇Δ (𝜄0 (ℓ)) ≔ ℓ

H(𝑓) (𝜄1 (𝑛)) ≔ 𝜄1 (𝑛) 𝜇Δ (𝜄1 (𝑛)) ≔ 𝜄1 (𝑛)
The fragment in which Δ = ∅ is the ℕ-universe-monomorphic type theory of Example 2.2.

Example 2.15 (Semilattice of levels). Universe levels in Lean and Agda are populated by level
variables, zero, suc(−), and − ∨ − (maximum) operations satisfying a handful of laws: zero and ∨
form a bounded join semilattice, suc distributes over ∨, and 𝛼 ∨ suc(𝛼) = suc(𝛼).
These proof assistants do not directly fit into our framework for two reasons. First, unlike us,

Agda internalizes the type of universe levels; however, our signatures of top-level definitions
capture the essence of internal prenex level quantification, in that each definition generalizes over
(and can be instantiated with) a collection of universe levels.4

Amore serious issue is that accurately capturing the behavior of ∨ in these systems requires us to
model universe lifting𝔘𝑖 → 𝔘𝑗 and universe membership𝔘𝑖 : 𝔘𝑗 via two different relations, rather
than as the non-strict ≤ and strict < orders associated to a single relation as we have done above. To
see why, observe that we want 𝛼 ≤ 𝛼 ∨ 𝛽 to ensure that we can lift ⇑𝛼∨𝛽

𝛼
: 𝔘𝛼 → 𝔘𝛼∨𝛽 . But neither

a strict inequality (𝛼 < 𝛼 ∨ 𝛽) nor an equality (𝛼 = 𝛼 ∨ 𝛽) gives us the correct notion of universe
membership: the former implies 𝔘𝛼 : 𝔘𝛼∨𝛽 , which under 𝛽 ↦→ 𝛼 yields the inconsistent 𝔘𝛼 : 𝔘𝛼 by
𝛼 ∨ 𝛼 = 𝛼 , whereas the latter under 𝛽 ↦→ suc(𝛼) implies 𝛼 = suc(𝛼) by 𝛼 ∨ suc(𝛼) = suc(𝛼).
4Our framework does not capture Agda’s non-prenex level quantification.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:10 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

In Section 5.1 we discuss a modification to our framework that decouples the non-strict/lifting
and strict/membership relations, but for the moment we can instead approximate these systems by
restricting what lifts exist. Setting aside zero and suc for simplicity, we can defineH(Δ) to add
“formal joins” to Δ as follows:

Given a finite subset Ξ of a poset Δ, define the “tip” elements of Ξ as the set
TipsΔ (Ξ) ≔ {𝛼 | 𝛼 ∈ Ξ and ¬∃𝛽.(𝛼 <Δ 𝛽)}

and define the poset𝔓+ (Δ) of finite subsets of Δ containing only tip elements as follows:
|𝔓+ (Δ) | ≔ non-empty subsets of Δ of incomparable elements

Ξ <𝔓+ (Δ) Θ ⇐⇒ ∀𝛼∈Ξ, ∃𝛽∈Θ, 𝛼 <Δ 𝛽

The elements of𝔓+ (Δ) represent non-empty formal joins of elements of Δ, subject to the limitation
described above: concretely, the formal join of Ξ may not be <𝔓+ (Δ) the formal join of Θ even if
Ξ ⊂ Θ. (We exclude the empty set because it would be < itself.)
Using these formal joins, we define a universe hierarchy monad as follows:

H(Δ) ≔ 𝔓+ (Δ)
H (𝑓) (Ξ) ≔ Tips({𝑓 (𝛼) | 𝛼 ∈ Ξ})

𝜂Δ (𝛼) ≔ {𝛼}
𝜇Δ (𝑃) ≔ Tips(⋃Ξ∈𝑃Ξ)

We sketch the proof that H is a monad:
• H (𝑓) preserves the strict order <H(Δ) : SupposeΞ < Θ and 𝑓 is <-preserving; it suffices to show
H(𝑓) (Ξ) < H(𝑓) (Θ). Choose any 𝛼 ′ ∈ H (𝑓) (Ξ), and show there exists 𝛽 ′ ∈ H (𝑓) (Θ)
such that 𝛼 ′ < 𝛽 ′. For any 𝛼 ′ ∈ H (𝑓) (Ξ), there exists 𝛼 ∈ Ξ such that 𝛼 ′ = 𝑓 (𝛼). Then,
because Ξ < Θ, there exists 𝛽 ∈ Θ such that 𝛼 < 𝛽 . Therefore, there exists 𝛽 ′′ ∈ H (𝑓) (Θ)
such that 𝑓 (𝛽) ≤ 𝛽 ′′, and 𝛼 ′ = 𝑓 (𝛼) < 𝑓 (𝛽) ≤ 𝛽 ′′ because 𝑓 preserves the order 𝛼 < 𝛽 .

• H (id) is the identity, and H(−) preserves composition.
• 𝜂Δ preserves the strict order: if 𝛼 < 𝛽 ∈ Δ, then {𝛼} < {𝛽}.
• 𝜇Δ preserves the strict order: if 𝑃 < 𝑄 ∈ 𝔓+ (𝔓+ (Δ)), for any 𝛼 ∈ 𝜇Δ (𝑃), there exists Ξ ∈ 𝑃

such that 𝛼 ∈ Ξ. Because 𝑃 < 𝑄 , there exists Θ ∈ 𝑄 such that Ξ < Θ. Therefore, there exists
𝛽 ∈ Θ such that 𝛼 < 𝛽 , and 𝛽 ′ ∈ 𝜇Δ (𝑄) such that 𝛼 < 𝛽 ≤ 𝛽 ′.

In Section 3 we will discuss our primary examples of universe-polymorphic type theories, those
arising from McBride-style stratification.

2.3 Consistency of Generalized Universe Hierarchies
The universe-monomorphic and -polymorphic theories presented in this section include some rather
unusual universe hierarchies as instances, e.g. infinite descending chains of universes (Example 2.3).
One may therefore reasonably wonder whether these systems are consistent: type theorists typically
establish consistency via some kind of model construction which uses the well-foundedness of the
universe hierarchy as the basis of an induction order [Kovács 2022].
In this section we prove that any H -polymorphic type theory is as consistent as standard

(monomorphic) type theory with ℕ-indexed universes, essentially because any given proof can
only mention finitely many universes, allowing us to interpret those universe levels as natural
numbers while preserving the strict order. We therefore argue that type theorists should break
the longstanding tradition of equating syntactic universe levels with the induction order used in
building semantic models: the former need not even be well-founded (as in Examples 2.3 and 2.4).
The key to consistent syntax is simply irreflexivity, that is, preventing 𝔘 : 𝔘.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:11

Lemma 2.16. Let 𝐿 be a poset. For any derivation𝔇 in 𝐿-monomorphic type theory, there is a finite
poset 𝐿′, a full monomorphism 𝜎 ∈ SOrd(𝐿′, 𝐿), and a derivation𝔇′ in 𝐿′-monomorphic type theory
such that𝔇′ [𝜎] = 𝔇.

Proof. Let 𝐿′ be the subobject of 𝐿 containing those universe levels that index type judgments in
𝔇, and let𝜎 be the inclusion 𝐿′ → 𝐿. The poset 𝐿′ is finite because inference rules in 𝐿-monomorphic
type theory mention only finite numbers of universe levels, and derivations consist of finitely
many inference rules. We obtain the 𝐿′-derivation𝔇′ by replacing all levels ℓ ∈ 𝐿 in𝔇 with their
preimages in 𝐿′. By construction,𝔇′ [𝜎] = 𝔇. □

We can then relate the consistency ofH -polymorphic type theory to that of ℕ-monomorphic
type theory in a series of steps:
Lemma 2.17 (Consistency of universe-monomorphic type theory). For any poset 𝐿, if 𝐿-

monomorphic type theory is inconsistent, then ℕ-monomorphic type theory is inconsistent.

Proof. Suppose there is a derivation 𝔇 of · ⊢𝐿 𝑒 : 0⊤ in 𝐿-monomorphic type theory. By
Lemma 2.16, there is a derivation of · ⊢𝐿′ 𝑒′ : 0⊤ in 𝐿′-monomorphic type theory for some finite 𝐿′
and some term 𝑒′. But any finite 𝐿′ : SOrd admits a morphism 𝐿′ → ℕ, and thus by Lemma 2.7,
there is a derivation of · ⊢ℕ 𝑒′′ : 0⊤ in ℕ-monomorphic type theory for some term 𝑒′′, which is to
say that ℕ-monomorphic type theory is inconsistent. □

Lemma 2.18. For any hierarchy theoryH , the judgmentΔ; Γ ⊢·
H 𝑒 : 𝐴 is derivable inH -polymorphic

type theory if and only if Γ ⊢H(Δ) 𝑒 : 𝐴 is derivable in H(Δ)-monomorphic type theory.

Proof. By induction on the derivation. □

Theorem 2.19 (Consistency of universe-polymorphic type theory). For any hierarchy theory
H , ifH -polymorphic type theory is inconsistent, then ℕ-monomorphic type theory is inconsistent.

Proof. Suppose the judgment Δ; · ⊢·
H 𝑒 : 0⊤ is derivable for some poset Δ and some term 𝑒 in

H -polymorphic type theory. By Lemma 2.18,H(Δ)-monomorphic type theory is inconsistent, and
thus by Lemma 2.17, ℕ-monomorphic type theory is inconsistent. □

3 CRUDE BUT UNIVERSAL STRATIFICATION
McBride has proposed displacement as a “crude but effective”mechanism for universe polymorphism,
in which top-level definitions are written in a monomorphic fashion but can be uniformly lifted
(−)⇑ at their use sites to higher universe levels [McBride 2002, 2011]. For example, a user might
define the (type-)polymorphic identity function at 𝔘0:

id :
∏

𝐴:𝔘0 (𝐴 → 𝐴)
To apply this function to a type in 𝔘𝑛 , we can lift, or displace, the entire definition by 𝑛 universe
levels, yielding:

id⇑𝑛 :
∏

𝐴:𝔘𝑛
(𝐴 → 𝐴)

Thus one writes id⇑1 (𝔘0) (𝐴) to apply the identity function to 𝐴 : 𝔘0, using the fact that 𝔘0 : 𝔘1.
Rather than considering displacement ⇑1 to “substitute 1 for 0,” we can understand McBride’s

scheme as implicitly indexing each top-level definition by a single universe level 𝛼 , where
𝛼 ; · ⊢ id𝛼 :

∏
𝐴:𝔘𝛼

(𝐴 → 𝐴)
Then displacement (−)⇑𝑛 performs the level substitution [𝛼 ↦→ 𝛼 + 𝑛], and uses of top-level
definitions implicitly instantiate [𝛼 ↦→ 0]. More abstractly, one might imagine universe levels as
pairs of a level variable 𝛼 with a natural number 𝑛 denoting the total displacement of the variable
𝛼 ; then (−)⇑𝑛 sends the universe level (𝛼,𝑚) to (𝛼,𝑚 + 𝑛).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:12 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

Remark. The more abstract reformulation above can be understood through the lens of Cayley’s
theorem, which establishes an isomorphism between a group 𝐺 and the multiplication action of𝐺 on
itself (as a subgroup of the automorphism group of |𝐺 |), in this case regarding 𝑛 ∈ ℕ as addition by 𝑛
𝜆𝛼.𝛼 +𝑛. This functional interpretation will prove a useful conceptual leap toward richer level systems.

In the remainder of this section, we generalize McBride’s displacement operation, then prove
that any hierarchy theory H can be understood as an instance of this generalized displacement.

3.1 Algebras of Displacements
We will start by rephrasing ℕ-displacement as a hierarchy theory (a monad on SOrd); then, we will
investigate what is the minimum algebraic structure needed to perform displacement for a non-ℕ
poset. Our displacement monad is defined in terms of the following construction:

Definition 3.1 (Left-invariant right-centered product). Given posets 𝐴 and 𝐵 and an element 𝑏 ∈ 𝐵,
their left-invariant right-centered product 𝐴 ⋉𝑏 𝐵 is the following poset (defined via its strict order):

|𝐴 ⋉𝑏 𝐵 | ≔ |𝐴| × |𝐵 |
(𝑎1, 𝑏1) <𝐴⋉𝑏𝐵

(𝑎2, 𝑏2) ⇐⇒
(𝑎1 = 𝑎2 and 𝑏1 <𝐵 𝑏2) or (𝑎1 <𝐴 𝑎2 and 𝑏1 ≤𝐵 𝑏 ≤𝐵 𝑏2)

Remark. The strict order <𝐴⋉𝑏𝐵
is the least relation generated by:

(1) (𝑎, 𝑏1) < (𝑎, 𝑏2) for any 𝑎 ∈ 𝐴 and any 𝑏1 <𝐵 𝑏2 ∈ 𝐵.
(2) (𝑎1, 𝑏) < (𝑎2, 𝑏) for any 𝑎1 <𝐴 𝑎2 ∈ 𝐴 when 𝑏 ∈ 𝐵 is the given element (the center of 𝐵).

Condition (1) expresses the constraint that the level 𝛼 + 10 should be greater than 𝛼 + 5. Condition (2)
states that displacement should respect the strict order of 𝐴 when at the center of 𝐵; this is needed to
define the unit 𝜂 of the hierarchy theory. The center is intended to represent the identity displacement;
the reason why we restrict condition (2) to the center of 𝐵 (rather than arbitrary elements of 𝐵) is that,
later in Section 3.4, a critical construction used in the proof of Lemma 3.8 will not necessarily preserve
the strict order (2) for non-center elements of 𝐵. (See the remark on Page 17.)

Using Definition 3.1, we can express ℕ-displacement as the following “McBride monad”M:

M(Δ) ≔ Δ ⋉0 ℕ

M(𝜎) (𝛼, 𝑛) ≔ (𝜎 (𝛼), 𝑛) (functoriality)
𝜂Δ (𝛼) ≔ (𝛼, 0)

𝜇Δ ((𝛼, 𝑛1), 𝑛2) ≔ (𝛼, 𝑛1 + 𝑛2)

The monad M already generalizes McBride’s “crude but effective stratification” from operating
only on definitions parameterized by a single level variable 𝛼 , to terms parameterized by arbitrary
level contexts Δ. What about generalizing ℕ? The necessary components are a set of displacements
D with a partial order ≤D , a binary operator • on D, and an element ★ ∈ D (likely a unit).
Thus, suppose that instead of (ℕ, +, 0, ≤) we have an arbitrary pointed magma with a strict order
(D, •,★, ≤D), and we build the following candidate hierarchy theory MD :

MD (Δ) ≔ Δ ⋉★ D
MD (𝑓) (𝛼,𝑑) ≔ (𝑓 (𝛼), 𝑑)

𝜂Δ (𝛼) ≔ (𝛼,★)
𝜇Δ ((𝛼,𝑑1), 𝑑2) ≔ (𝛼,𝑑1 • 𝑑2)

Under what conditions on (D, •,★, ≤D) is MD a hierarchy theory?

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:13

• MD must be a functor SOrd → SOrd, i.e. for any <-preserving map 𝑓 : Δ1 → Δ2,

MD (𝑓) (𝛼,𝑑) ≔ (𝑓 (𝛼), 𝑑)
should preserve the strict order of Δ1 ⋉★ D. Suppose (𝛼,𝑑) < (𝛽, 𝑒); we need (𝑓 (𝛼), 𝑑) <

(𝑓 (𝛽), 𝑒). Unfolding the definition of ⋉★, there are two cases to consider:
(1) 𝛼 = 𝛽 and 𝑑 <D 𝑒 . The condition already holds by the functoriality of 𝑓 .
(2) 𝛼 < 𝛽 and 𝑑 ≤D ★ ≤D 𝑒 . The condition already holds because 𝑓 is <-preserving.
We also have to check thatMD (−) preserves identity and composition, which is immediate.

• Functions 𝜂Δ already preserve the strict order by the definition of ⋉★. For any 𝛼1 <Δ 𝛼2, we
have (𝛼1,★) <D (𝛼2,★) ∈ Δ ⋉★ D under no additional hypotheses.

• Functions 𝜇Δ must also preserve the strict order. Suppose ((𝛼,𝑑1), 𝑑2) < ((𝛽, 𝑒1), 𝑒2); we need
(𝛼,𝑑1 • 𝑑2) < (𝛽, 𝑒1 • 𝑒2). By the definition of ⋉★, there are three cases:

(1) 𝛼 = 𝛽 , 𝑑1 = 𝑒1, and 𝑑2 <D 𝑒2. The condition holds if (𝑑1 • 𝑑2) <D (𝑒1 • 𝑒2); that is, if the
order <D is left-invariant with respect to the operator •.

(2) 𝛼 = 𝛽 , 𝑑1 <D 𝑒1, and 𝑑2 ≤D ★ ≤D 𝑒2. Thanks to transitivity, the condition holds if ★ is a
right unit of • and the non-strict order ≤D is left-invariant with respect to the operator • (a
condition weaker than the strict order <D being left-invariant):

(𝑑1 • 𝑑2) ≤D (𝑑1 •★) = 𝑑1 <D 𝑒1 = (𝑒1 •★) ≤D (𝑒1 • 𝑒2)
(3) 𝛼 < 𝛽 , 𝑑1 ≤D ★ ≤D 𝑒1, and 𝑑2 ≤D ★ ≤D 𝑒2. The condition holds if (𝑑1 •𝑑2) ≤D ★ ≤D (𝑒1 •𝑒2),

which in turn holds if ★ is a right unit and ≤D is left-invariant:

(𝑑1 • 𝑑2) ≤D (𝑑1 •★) = 𝑑1 ≤D ★ ≤D 𝑒1 = (𝑒1 •★) ≤D (𝑒1 • 𝑒2)
or alternatively if ★ is a left unit and ≤D is right-invariant:

(𝑑1 • 𝑑2) ≤D (★ • 𝑑2) = 𝑑2 ≤D ★ ≤D 𝑒2 = (★ • 𝑒2) ≤D (𝑒1 • 𝑒2)
• 𝜂 and 𝜇 are natural transformations immediately by definition.
• The monad laws require 𝜇 ◦ M(𝜇) = 𝜇 ◦ 𝜇M(−) and 𝜇 ◦ M(𝜂) = 𝜇 ◦ 𝜂M(−) = id. Unfolding
definitions, these assert that • is associative and ★ is a (left and right) unit of •.

In sum, MD is a monad when (D, •,★, ≤D) satisfies the following properties:
(1) The binary operator • is associative.
(2) The element ★ is a unit of the operator •.
(3) The strict order <D is left-invariant with respect to the operator •.

We have mechanized the above statement in Agda. Magmas satisfying the non-strict version of
condition (3) are known as left-order magmas [Ha and Harizanov 2018], and thus the algebras we
consider might reasonably be called strictly-left-order monoids. (They are almost ordered monoids,
except that the weak order is not necessarily right-invariant with respect to the binary operator.)
Due to the central role of these algebras in our work, we will simply call them displacement algebras.

Definition 3.2 (Displacement algebra). A displacement algebra is a monoid with a partial order
(D, •,★, ≤D) such that the strict order <D is left-invariant:

𝑑1 <D 𝑑2 =⇒ (𝑑 • 𝑑1) <D (𝑑 • 𝑑2) for any 𝑑 ∈ D

McBride’s original displacement operation corresponds to the displacement algebra (ℕ, +, 0, ≤).
In Section 3.4, we will argue that displacement algebras capture the essence of hierarchy theories,
including ones that are not obviously instances of MD for some D.

Remark. McBride [2002] was already aware that any class of strictly monotone displacements with
identity and composition suffices for “crude but effective stratification.” Our contribution is a much

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:14 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

more careful analysis of his idea within our framework of universe hierarchy monads: we show above
that these conditions are not only sufficient but also necessary for appropriate universe polymorphism.

3.2 Augmented Displacement Algebras
We have just seen that McBride’s “crude but effective stratification” can be implemented using any
displacement algebra (D, •,★, ≤). In practice, however, it may be useful to place several additional
conditions on displacement algebras:

Right-invariance of ≤. One might expect that substituting a larger universe level into a level
expression does not make the resulting expression smaller. This condition is not needed for
the correctness of the type theory, but may be more intuitive to users. A displacement algebra
D enjoys right-invariance of ≤ if and only if (D, ≤) is also an ordered monoid.

Joins. A join operator on displacements is useful for levels involving multiple variables. Note
that this is not the join operator on whole level expressions, but only on displacements.

Bottom. A bottom element ⊥ corresponds to a minimum displacement. Note that this might
not be the unit of •, though in McBride’s setting 0 ∈ ℕ plays both roles. Having ⊥ allows
us to define a join operator on lexicographically ordered tuples, setting the join of the pairs
(𝑑1, 𝑒1) and (𝑑2, 𝑒2) to be (𝑑1 ∨ 𝑑2,⊥) when the join of the first components, (𝑑1 ∨ 𝑑2), is
strictly greater than both 𝑑1 and 𝑑2. We have not found ⊥ useful in other situations.

Constants. ℕ-displacement has displacement by a constant (𝜆𝛼.𝛼 + 10), but not displacement
to a constant level (𝜆𝛼.10). We do not believe these truly constant displacements are useful;
that said, in Section 3.3 we provide a general construction of truly constant displacements.

Successors. A successor operator gives the minimal level ℓ + 1 containing the type 𝔘ℓ , which
is helpful for type inference. However, many of our examples do not admit successors.

In Section 3.3 we will consider examples with a join operator, a bottom element, or truly constant
displacements. We adopt the following terminology:

Definition 3.3 (Displacement semilattice). A displacement semilattice D is a displacement algebra
equipped with a join operator “∨” with respect to its non-strict order.

3.3 Examples of Displacement Algebras
We now present a handful of examples of displacement algebras, starting with more familiar ones.
All the examples have been mechanized in Agda and shown to satisfy the axioms of displacement
algebras (Definition 3.2).

3.3.1 Natural Numbers, Integers, and Non-Positive Integers. (ℕ, +, 0, ≤) along with 0 and max is
a bounded displacement semilattice. This arguably matches the conventional universe levels the
best. (ℤ, +, 0, ≤) along with max is a displacement semilattice, and both its non-negative (ℕ) and
non-positive fragments are its displacement subsemilattices.

3.3.2 Constant Displacements.

Definition 3.4. A right displacement-action of a displacement algebra D on a poset 𝑆 is a set
function 𝑓 : |𝑆 | × |D| → |𝑆 | that:

Respects unit: 𝑓 (𝑠) (★) = 𝑠;
Respects composition: 𝑓 (𝑠) (𝑑 • 𝑑 ′) = 𝑓 (𝑓 (𝑠) (𝑑)) (𝑑 ′); and
Respects the strict order of D: 𝑑 <D 𝑑 ′ =⇒ 𝑓 (𝑠) (𝑑) <𝑆 𝑓 (𝑠) (𝑑 ′).
Suppose we have a displacement algebra D, a poset 𝐶 (“constants”), and a right D-action 𝑓 on

𝐶 . We may construct a displacement algebra Dconst = (|Dconst |, •,★, ≤) as follows:
|Dconst | ≔ |D| ⨿ |𝐶 |

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:15

_ • 𝜄1 (𝑐) ≔ 𝜄1 (𝑐)
𝜄0 (𝑑) • 𝜄0 (𝑑 ′) ≔ 𝜄0 (𝑑 •D 𝑑 ′)
𝜄1 (𝑐) • 𝜄0 (𝑑) ≔ 𝜄1 (𝑓 (𝑐) (𝑑))

★≔ 𝜄0 (★D)
𝑑 ≤ 𝑑 ′ ⇐⇒ (𝑑 = 𝜄0 (𝑑) and 𝑑 ′ = 𝜄0 (𝑑 ′) and 𝑑 ≤D 𝑑 ′)

or (𝑑 = 𝜄1 (𝑐) and 𝑑 ′ = 𝜄1 (𝑐′) and 𝑐 ≤𝐶 𝑐′)

Definition 3.5. A right displacement-action of D on 𝑆 is weakly right-invariant if 𝑎 ≤ 𝑏 implies
that 𝑓 (𝑎) (𝑥) ≤ 𝑓 (𝑏) (𝑥) for every 𝑎, 𝑏 : |𝑆 | and 𝑥 : |D|.

If D is an ordered monoid and 𝑓 is weakly right-invariant, then Dconst is also an ordered monoid.

3.3.3 Binary Products. Suppose we have two displacement algebras D1 and D2. We may construct
a new displacement algebra D = (|D|, •,★, ≤) as follows:

|D| ≔ |D1 | × |D2 |
(𝑑1, 𝑑2) • (𝑑 ′1, 𝑑 ′2) ≔ (𝑑1 •D1 𝑑

′
1, 𝑑2 •D2 𝑑

′
2)

★≔ (★D1 ,★D2)
(𝑑1, 𝑑2) ≤ (𝑑 ′1, 𝑑 ′2) ⇐⇒ 𝑑1 ≤D1 𝑑

′
1 and 𝑑2 ≤D1 𝑑

′
2

If both D1 and D2 are ordered monoids, so is D. If both D1 and D2 have a bottom element, so
does D. If both D1 and D2 have joins, so does D.

3.3.4 Lexicographic Binary Products. Suppose we have two displacement algebras D1 and D2. We
may construct a new displacement algebra D = (|D|, •,★, ≤) as follows:

|D| ≔ |D1 | × |D2 |
(𝑑1, 𝑑2) • (𝑑 ′1, 𝑑 ′2) ≔ (𝑑1 •D1 𝑑

′
1, 𝑑2 •D2 𝑑

′
2)

★≔ (★D1 ,★D2)
(𝑑1, 𝑑2) ≤ (𝑑 ′1, 𝑑 ′2) ⇐⇒ 𝑑1 <D1 𝑑

′
1 or (𝑑1 = 𝑑 ′1 and 𝑑2 ≤D2 𝑑

′
2)

If both D1 and D2 have a bottom element, so does D. If both D1 and D2 have joins and D2 has a
bottom element, D has joins as follows:

(𝑑1, 𝑑2) ∨ (𝑑 ′1, 𝑑 ′2) =

(𝑑1∨𝑑 ′1,⊥D2) 𝑑1 < 𝑑1 ∨ 𝑑 ′1 and 𝑑

′
1 < 𝑑1 ∨ 𝑑 ′1

(𝑑1∨𝑑 ′1, 𝑑2) 𝑑1 = 𝑑1 ∨ 𝑑 ′1 and 𝑑
′
1 < 𝑑1 ∨ 𝑑 ′1

(𝑑1∨𝑑 ′1, 𝑑 ′2) 𝑑1 < 𝑑1 ∨ 𝑑 ′1 and 𝑑
′
1 = 𝑑1 ∨ 𝑑 ′1

(𝑑1∨𝑑 ′1, 𝑑2∨𝑑 ′2) 𝑑1 = 𝑑1 ∨ 𝑑 ′1 and 𝑑
′
1 = 𝑑1 ∨ 𝑑 ′1

3.3.5 Infinite Products. Suppose we have a displacement algebra D. We may construct a new
displacement algebra D∞ = (|D∞ |, •,★, ≤) as follows:

|D∞ | ≔ ℕ → |D|
𝑑 • 𝑑 ′ ≔ 𝜆(𝑖:ℕ).𝑑 (𝑖) •D 𝑑 ′ (𝑖)

★≔ 𝜆(𝑖:ℕ).★D

𝑑 ≤ 𝑑 ′ ⇐⇒ ∀𝑖 .𝑑 (𝑖) ≤ 𝑑 ′ (𝑖)
If D is an ordered monoid, so is D∞, and if D has a bottom element (resp., joins), so does D∞.
In practice, one can limit 𝑑 ∈ D∞ to functions which are nearly constant except for only finite
entries (that is, there exists 𝑑∗ ∈ D such that for only a finite number of 𝑖 , 𝑑 (𝑖) ≠ 𝑑∗); such

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:16 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

functions constitute a bounded displacement subsemilattice for which equality is decidable. One
can further fix 𝑑∗ to be ★D , i.e., restrict to functions with finite support, which form a displacement
subsemilattice (that in general lacks a bottom element).

3.3.6 Prefix Displacements. Given any set 𝑆 (with decidable equality, if in a constructive setting),
we may construct a displacement algebra D = (|D|, •,★, ≤) as follows:

|Dpre | ≔ List(𝑆)
𝑑 • 𝑑 ′ ≔ Concat(𝑑, 𝑑 ′)

★≔ Nil
𝑑 ≤ 𝑑 ′ ⇐⇒ 𝑑 is a prefix of 𝑑 ′

D has a bottom elementNil. This example is inspired by thread forking in concurrent programming,
where the universe at level ℓ represents the types inherited from its parent (prefix) threads. Spawning
a child thread corresponds to appending a fresh symbol to the end of the list, and the universe
hierarchy prevents access to types in its siblings. We do not have a particular use case of prefix
displacements in mind in the context of theorem provers, but displacement algebras are flexible
enough to include them as instances. Note that the join operation is by design not definable, because
the larger universes (descendant threads) diverge.

3.3.7 Fractal Displacements. Suppose we have a displacement algebra D. We may consider its
lexicographically ordered infinite products as a new displacement algebra D frac = (|D frac |, •,★, ≤):

|D frac | ≔ NonEmptyList(|D|)
Cons(𝑑1,Nil) • Cons(𝑑 ′1, 𝑑 ′2) ≔ Cons(𝑑1 •D 𝑑 ′1, 𝑑

′
2)

Cons(𝑑1,Cons(𝑑2, 𝑑3)) • 𝑑 ′ ≔ Cons(𝑑1,Cons(𝑑2, 𝑑3) • 𝑑 ′)
★≔ Cons(★D,Nil)

Cons(𝑑1,Nil) ≤ Cons(𝑑 ′1,−) ≔ 𝑑1 ≤D 𝑑 ′1
Cons(𝑑1,Cons(−,−)) ≤ Cons(𝑑1,Nil) ≔ 𝑑1 <D 𝑑 ′1

Cons(𝑑1,Cons(𝑑2, 𝑑3)) ≤ Cons(𝑑 ′1,Cons(𝑑 ′2, 𝑑 ′3)) ≔
𝑑1 <D 𝑑 ′1 or (𝑑1 = 𝑑 ′1 and Cons(𝑑2, 𝑑3) ≤ Cons(𝑑 ′2, 𝑑 ′3))

This algebra embeds the entire universe hierarchy as sublevels between any two universe levels.
As an analogy, one can embed the real line into the segment between 0 and 1. Each displacement is
a list of displacements at different magnitudes, from the most significant to the least.

3.3.8 Opposite Displacements. Suppose we have a displacement algebra D. We may construct a
new displacement algebra Dop = (|Dop |, •,★, ≤) as follows:

|Dop | ≔ |D|
𝑑 • 𝑑 ′ ≔ 𝑑 •D 𝑑 ′

★≔ ★D

𝑑 ≤ 𝑑 ′ ⇐⇒ 𝑑 ≥D 𝑑 ′

If D is an ordered monoid, so is Dop. This example demonstrates that we can freely flip the order
of displacements, making the larger universes become the smaller ones.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:17

3.4 Universal Hierarchy Theory
We now prove that any hierarchy theory H (over a small collection of small generating level
contexts) embeds into a hierarchy theory of the formMD (Theorem 3.10). Therefore, our generalized
notion of “crude but effective” displacement is sufficiently expressive to capture all universe
hierarchy theories. The main idea behind our construction is that we can represent (in the category-
theoretic sense) any hierarchy theory by a collection of endomorphism monoids, verifying first
that these endomorphism monoids form displacement algebras.

Definition 3.6. LetH be a hierarchy theory and Δ be a poset. We writeDH
Δ for EndoSOrdH (𝐹H (Δ)),

the endomorphism monoid of 𝐹H (Δ), equipped with the pointwise (non-strict) order:

|DH
Δ | ≔ SOrdH (𝐹H (Δ), 𝐹H (Δ))

𝜎 • 𝛿 ≔ 𝜎 ◦ 𝛿
★≔ 1𝐹H (Δ)

𝜎 ≤DH
Δ
𝛿 ⇐⇒ ∀𝛼∈Δ, 𝜎 (𝜂Δ (𝛼)) ≤H(Δ) 𝛿 (𝜂Δ (𝛼))

Lemma 3.7. For any hierarchy theory H and poset Δ, DH
Δ is a displacement algebra.

Proof. The strict order of DH
Δ is left-invariant because all morphisms preserve strict orders. □

Remark. The strict order is not right-invariant! When 𝜎 < 𝛿 , we know 𝜎 (𝜂Δ (𝛼)) < 𝛿 (𝜂Δ (𝛼)) for
some 𝛼 ∈ Δ, but not 𝜎 (𝜂Δ (𝛼 ′)) < 𝛿 (𝜂Δ (𝛼 ′)) for a different 𝛼 ′ ∈ Δ, not to mention 𝜎 • 𝜌 < 𝛿 • 𝜌 for
an arbitrary 𝜌 ∈ DH

Δ . This is why displacement algebras (Definition 3.2) only require left-invariance.
One special case is 𝜌 = ★, which does imply 𝜎 • 𝜌 < 𝛿 • 𝜌 , and this case has led to right-centeredness
in the left-invariant right-centered products (Definition 3.1). We need right-centeredness to make the
McBride monadMDH

Δ
a monad, but not more than that becauseDH

Δ might not support more equations.
That is, to show that a construction based on a left-invariant right-centered product is a monad, a
displacement algebra suffices, but a construction based on a product with general right-invariance will
in turn require the underlying displacement algebra to be right-invariant with respect to its strict order.

To claim that we can embed a hierarchy theory H , we need to embed both the elements of
H -algebras and the morphisms between them. The embedding involves two steps:
(1) Under reasonable assumptions, there is a large enough free algebra 𝐹H (Δ) whose endomor-

phisms and elements can embed all morphisms and elements from small free algebras.
(2) Endomorphisms and elements of 𝐹H (Δ) can be embedded into those of 𝐹MD (Ψ) for some D

and Ψ, where MD is the “generalized McBride monad” for the displacement algebra D.
We show the second step first because it is easier. Definition 3.6 takes care of the endomorphisms,
but we have to embed elements of the H -algebra, too. Thus, we consider {^} ⨿ Δ ⨿ Δ instead
of just Δ to give us extra room to embed elements of the H -algebra as endomorphisms. In the
following lemma, the embedding of endomorphisms is formulated as a functor𝑇 and the embedding
of elements is formulated as a natural transformation 𝜈 so that the square on the right commutes:

𝐹H (Δ) 𝐹H (Δ)

𝐹MD (Ψ) 𝐹MD (Ψ)

𝛼

𝑇 (𝛼)

H(Δ) H (Δ)

MD (Ψ) MD (Ψ)

𝑈 (𝛼)

𝑈 (𝑇 (𝛼))

𝜈𝐹 (Δ) 𝜈𝐹 (Δ)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:18 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

𝜎

ℓ

Δ^ Δ

=
ℓ [𝜎]

Δ^ Δ

Fig. 3. A visualization of the “dodging” in the proof of Lemma 3.8

Lemma 3.8. Let (H , 𝜂, 𝜇) be any hierarchy theory, Δ be any poset, {^} be any singleton set, and Ψ
be any non-empty set.5 Let D be the displacement algebra DH

{^}⨿Δ⨿Δ. There is a functor 𝑇 from the full
subcategory of SOrdH on the object 𝐹H (Δ) to the full subcategory of SOrdMD on the object 𝐹MD (Ψ).
Moreover, there is a natural transformation𝑈 H → 𝑈MD ◦𝑇 , and if H preserves monos, 𝑇 is faithful.

The idea behind {^} ⨿ Δ⨿ Δ is that {^} is for embedding elements (not endomorphisms) of the
freeH -algebra. The distinguished variable ^ can be mapped to those elements, using the variables
in the first copy of Δ. The first copy of Δ is where subsequent substitutions happen and is where
we should embed endomorphisms. The second copy of Δ is a buffer to prevent the original first
copy of Δ from colliding with the variables in embedded elements: when an embedded element is
using the first copy of Δ, the original first copy of Δ “dodges out” into the second copy of Δ. Such
dodging is needed for the embedding to commute with the application of endomorphisms. Figure 3
is a visualization of the dodging: The left-hand side represents the composition of embedded ℓ and
embedded 𝜎 , while the right-hand side represents the embedding of ℓ [𝜎]. Both sides must agree. If
the first copy of Δ (in blue) did not dodge out on the left-hand side, it would be further affected by
the embedded 𝜎 , while the first copy of Δ on the right-hand side will never be affected by 𝜎 .

Proof. Let Δ+ = {^} ⨿ Δ ⨿ Δ. 𝑇 must send all objects to 𝐹MD (Ψ). For morphisms, we will first
embed 𝜎 ∈ SOrdH (𝐹 (Δ), 𝐹 (Δ)) into SOrdH (𝐹 (Δ+), 𝐹 (Δ+)) as 𝑇 ′ (𝜎). Because we only work with
free algebras, we can uniquely specify 𝑇 ′ (𝜎) by considering 𝜎 = 𝑇 ′ (𝜎) ◦ 𝜂Δ+ ∈ SOrd(Δ+,H(Δ+)):

𝜎 (𝜄0 (^)) ≔ 𝜂Δ+ (𝜄0 (^))
𝜎 (𝜄1 (𝛼)) ≔ H(𝜄1) (𝜎 (𝜂Δ (𝛼)))
𝜎 (𝜄2 (𝛼)) ≔ 𝜂Δ+ (𝜄2 (𝛼))

Then, the 𝑇 ′ (𝜎) can be defined in terms of 𝜎 such that 𝜎 = 𝑇 ′ (𝜎) ◦ 𝜂Δ+ :

𝑇 ′ (𝜎) ≔ 𝜇Δ+ ◦ H (𝜎)
With the help of 𝑇 ′, we are ready to define 𝑇 (𝜎) ∈ SOrdMD (𝐹 (Ψ), 𝐹 (Ψ)) as follows:

𝑇 (𝜎) (𝛼,𝑑) ≔ (𝛼,𝑇 ′ (𝜎) •D 𝑑)
We need to show that 𝑇 (𝜎) preserves the strict order ofMD , which is generated by these two:

(1) (𝛼,𝑑1) < (𝛼,𝑑2) for any 𝛼 ∈ Ψ and any 𝑑1 < 𝑑2 ∈ D.
(2) (𝛼, 1𝐹H (Δ)) < (𝛽, 1𝐹H (Δ)) for any 𝛼 < 𝛽 ∈ Ψ.

The first holds because <Δ is left-invariant. The second holds vacuously because Ψ is discrete. (If Ψ
is not discrete, then we would need to show (𝛼,𝑇 ′ (𝜎)) < (𝛽,𝑇 ′ (𝜎)), which is in general false.)
5A set is a discrete poset.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:19

Identities. Suppose 𝜎 = id𝐹 (Δ) . We will consider id = 𝑇 ′ (id) ◦𝜂Δ+ that uniquely determines𝑇 ′ (id):

id ◦ 𝜄0 = 𝜂Δ+ ◦ 𝜄0
id ◦ 𝜄1 = H(𝜄1) ◦ 𝜂Δ = 𝜂Δ+ ◦ 𝜄1
id ◦ 𝜄2 = 𝜂Δ+ ◦ 𝜄2

Therefore id = 𝜂Δ+ and so 𝑇 ′ (id) = id. Consequently 𝑇 (id) = id as well, because:

𝑇 (id) (𝛼,𝑑) = (𝛼,𝑇 ′ (id) •D 𝑑) = (𝛼, id •D 𝑑) = (𝛼,𝑑)

Composition. Suppose we have endomorphisms 𝜎, 𝛿 ∈ SOrdH (𝐹 (Δ), 𝐹 (Δ)). We want to show
that 𝑇 (𝛿 ◦ 𝜎) = 𝑇 (𝛿) ◦𝑇 (𝜎). First, we expand both sides by their definitions:

𝑇 (𝛿 ◦ 𝜎) (𝛼,𝑑) = (𝛼,𝑇 ′ (𝛿 ◦ 𝜎) •D 𝑑)
𝑇 (𝛿) (𝑇 (𝜎) (𝛼,𝑑)) = (𝛼,𝑇 ′ (𝛿) •D 𝑇 ′ (𝜎) •D 𝑑) = (𝛼, (𝑇 ′ (𝛿) ◦𝑇 ′ (𝜎)) •D 𝑑)

It suffices to show𝑇 ′ (𝛿 ◦𝜎) = 𝑇 ′ (𝛿) ◦𝑇 ′ (𝜎). Note both sides are determined by their precomposition
with the monad unit 𝜂Δ+ . Consider an input 𝛼 ∈ Δ+ to the precompositions with 𝜂Δ+ :

• For 𝛼 ∈ Im 𝜄1, it suffices to consider the further precomposition with 𝜄1:

𝑇 ′ (𝛿 ◦ 𝜎) ◦ 𝜂Δ+ ◦ 𝜄1 = H(𝜄1) ◦ 𝛿 ◦ 𝜎 ◦ 𝜂Δ

𝑇 ′ (𝛿) ◦𝑇 ′ (𝜎) ◦ 𝜂Δ+ ◦ 𝜄1 = 𝑇 ′ (𝛿) ◦ H (𝜄1) ◦ 𝜎 ◦ 𝜂Δ

= 𝜇Δ+ ◦ H (𝛿) ◦ H (𝜄1) ◦ 𝜎 ◦ 𝜂Δ

= 𝜇Δ+ ◦ H (𝛿 ◦ 𝜄1) ◦ 𝜎 ◦ 𝜂Δ

= 𝜇Δ+ ◦ H (H (𝜄1) ◦ 𝛿 ◦ 𝜂Δ) ◦ 𝜎 ◦ 𝜂Δ

= H(𝜄1) ◦ 𝛿 ◦ 𝜎 ◦ 𝜂Δ

• Otherwise, 𝛼 must be 𝜄0 (^) or 𝜄2 (𝛼 ′) for some 𝛼 ′ ∈ Δ. In either case,

𝑇 ′ (𝛿 ◦ 𝜎) (𝜂Δ+ (𝛼)) = 𝜂Δ+ (𝛼) = 𝑇 ′ (𝛿) (𝜂Δ+ (𝛼)) = 𝑇 ′ (𝛿) (𝑇 ′ (𝜎) (𝜂Δ+ (𝛼)))

Natural transformation. Let ♦ be a fixed element in Ψ. For ℓ ∈ H (Δ), we will define an element in
D and thus an element inMD (Ψ). Elements inD are uniquely determined by their precomposition
with 𝜂Δ+ ; similar to how we defined 𝑇 ′ (𝜎) via 𝜎 , we first define ℓ ∈ SOrd(Δ+,H(Δ+)):

ℓ (𝜄0 (^)) ≔ H(𝜄1) (ℓ)
ℓ (𝜄1 (𝛼)) ≔ 𝜂Δ+ (𝜄2 (𝛼))
ℓ (𝜄2 (𝛼)) ≔ 𝜂Δ+ (𝜄2 (𝛼))

Then, the element in D we want is 𝜇Δ+ ◦ H (ℓ). That is, the universe level ℓ is mapped to

ℓ̃ ≔ (♦, 𝜇Δ+ ◦ H (ℓ)) ∈ MD (Ψ)

We claim the mapping 𝜈 : ℓ ↦→ ℓ̃ forms a natural transformation from𝑈 H to𝑈MD ◦𝑇 :
• 𝜈 is <-preserving. Suppose ℓ ′ < ℓ . By construction, ℓ ′ (𝛼) ≤ ℓ (𝛼) for all 𝛼 ∈ Δ+ and

ℓ ′ (𝜄0 (^)) = ℓ ′ < ℓ = ℓ (𝜄0 (^))

Therefore, 𝜈 (ℓ ′) = ℓ̃ ′ <D ℓ̃ = 𝜈 (ℓ ′).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:20 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

• 𝜈 is natural. Suppose we have 𝜎 ∈ SOrdH (𝐹 (Δ), 𝐹 (Δ)).

𝜈 (𝜎 (ℓ)) = (♦, 𝜇Δ+ ◦ H (𝜎 (ℓ)))
𝑇 (𝜎) (𝜈 (ℓ)) = 𝑇 (𝜎) (♦, 𝜇Δ+ ◦ H (ℓ))

= (♦,𝑇 ′ (𝜎) ◦ 𝜇Δ+ ◦ H (ℓ))
= (♦, 𝜇Δ+ ◦ H (𝜎) ◦ 𝜇Δ+ ◦ H (ℓ))

It suffices to show that 𝜇Δ+◦H (𝜎 (ℓ)) = 𝜇Δ+◦H (𝜎)◦𝜇Δ+◦H (ℓ) ∈ D. Because these morphisms
are between freeH -algebras, it suffices to compare their precompositions with 𝜂Δ+ :

𝜇Δ+ ◦ H (𝜎 (ℓ)) ◦ 𝜂Δ+ = 𝜎 (ℓ)
𝜇Δ+ ◦ H (𝜎) ◦ 𝜇Δ+ ◦ H (ℓ) ◦ 𝜂Δ+ = 𝜇Δ+ ◦ H (𝜎) ◦ ℓ

– For variables 𝛼 = 𝜄0 (^) ∈ Δ+,

𝜎 (ℓ) (𝜄0 (^)) = H(𝜄1) (𝜎 (ℓ))
(𝜇Δ+ ◦ H (𝜎) ◦ ℓ) (𝜄0 (^)) = (𝜇Δ+ ◦ H (𝜎)) (H (𝜄1) (ℓ))

= (𝜇Δ+ ◦ H (𝜎 ◦ 𝜄1)) (ℓ)
= (𝜇Δ+ ◦ H (H (𝜄1) ◦ 𝜎 ◦ 𝜂Δ)) (ℓ)
= (H (𝜄1) ◦ 𝜎) (ℓ)

– For variables 𝛼 = 𝜄1 (𝛼 ′) ∈ Δ+ where 𝛼 ′ ∈ Δ, consider the further precomposition with 𝜄1:

𝜎 (ℓ) ◦ 𝜄1 = 𝜂Δ+ ◦ 𝜄2
𝜇Δ+ ◦ H (𝜎) ◦ ℓ ◦ 𝜄1 = 𝜇Δ+ ◦ H (𝜎) ◦ 𝜂Δ+ ◦ 𝜄2 = 𝜎 ◦ 𝜄2 = 𝜂Δ+ ◦ 𝜄2

The intuition is that variables in the first copy of Δ have dodged into the second copy.
– For variables 𝛼 = 𝜄2 (𝛼 ′) ∈ Δ+ where 𝛼 ′ ∈ Δ, the proof is similar to the above case. The
intuition is that the second copy of Δ will never be affected by subsequent substitutions.

Faithfulness. For parallel 𝜎, 𝛿 ∈ SOrdH (𝐹 (Δ), 𝐹 (Δ)) such that 𝑇 (𝜎) = 𝑇 (𝛿), we have 𝑇 ′ (𝜎) =

𝑇 ′ (𝛿) as the second components of 𝑇 (−). Therefore,
H(𝜄1) ◦ 𝜎 ◦ 𝜂Δ = 𝑇 ′ (𝜎) ◦ 𝜂Δ+ ◦ 𝜄1 = 𝑇 ′ (𝛿) ◦ 𝜂Δ+ ◦ 𝜄1 = H(𝜄1) ◦ 𝛿 ◦ 𝜂Δ

IfH preserves monos,H(𝜄1) is monic and 𝜎 ◦𝜂Δ = 𝛿 ◦𝜂Δ; thus 𝜎 = 𝛿 , which means𝑇 is faithful. □

With Lemma 3.8, what remains is the embedding of morphisms between small free H -algebras
and their elements into endomorphisms and elements of a large enough free H -algebra. The
following lemma does exactly that, where the larger algebra is essentially generated by

∐
𝑖 Δ𝑖 , the

disjoint coproduct of generators of small free H -algebras. Similar to Lemma 3.8, embedding of
endofunctors is phrased as a functor 𝑇 and that of elements as a natural transformation 𝜈 :

𝐹 (Δ𝑖) 𝐹 (Δ 𝑗)

𝐹 (Δ) 𝐹 (Δ)

𝛼

𝑇 (𝛼)

H(Δ𝑖) H (Δ 𝑗)

H (Δ) H (Δ)

𝑈 (𝛼)

𝑈 (𝑇 (𝛼))

𝜈𝐹 (Δ𝑖) 𝜈𝐹 (Δ𝑗)

Note that we will use the same “dodging” technique in Lemma 3.8 but with infinitely many
copies of

∐
𝑖 Δ𝑖 instead of just two. In Lemma 3.8, we could afford the collision of the first and the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:21

second copies of Δ when embedding elements as the second copy of Δ will never be used, but here,
in order for the embedding of morphisms to be functorial (in particular, preserving isomorphisms),
no collision can happen due to dodging. This leads to the scheme of using infinitely many copies∐

𝑛∈ℕ
∐

𝑖 Δ𝑖 to embed morphisms without collision. As an analogy, the infinite dodging is similar
to how guests can always make space for a new guest in Hilbert’s infinite hotels by moving to their
successor rooms. We also have to move those guests back to their original rooms (the predecessors)
when the new guest checks out, so that the resulting map can be an isomorphism.

Lemma 3.9. Let (H , 𝜂, 𝜇) be any hierarchy theory and {Δ𝑖 }𝑖 be a small collection of small posets.
There is a functor 𝑇 out of the full subcategory of SOrdH induced by the free algebras {𝐹H (Δ𝑖)}𝑖
and into the full subcategory of SOrdH with one object 𝐹H (∐𝑛∈ℕ

∐
𝑖 Δ𝑖). Moreover, there is a natural

transformation from𝑈 H to𝑈 H ◦𝑇 , and if H preserves monos, 𝑇 is faithful.

Proof. Let Δ =
∐

𝑛∈ℕ
∐

𝑖 Δ𝑖 . The functor 𝑇 must map all objects to 𝐹 (Δ). For morphisms,
suppose we have 𝜎 ∈ SOrdH (𝐹 (Δ𝑖), 𝐹 (Δ 𝑗)). Because we only work with freeH -algebras, we can
uniquely specify 𝑇 (𝜎) by considering 𝜎 = 𝑇 (𝜎) ◦ 𝜂Δ ∈ SOrd(Δ,H(Δ)):

𝜎 (𝛼) ≔

H(𝜄0 ◦ 𝜄 𝑗) (𝜎 (𝜂Δ𝑖

(𝛼 ′))) if 𝛼 = 𝜄0 (𝜄𝑖 (𝛼 ′)) for some 𝛼 ′ ∈ Δ𝑖

𝜂Δ (𝜄𝑛 (𝛼 ′)) if 𝛼 = 𝜄𝑛+1 (𝛼 ′) for some 𝛼 ′ ∈ Im 𝜄𝑖 \ Im 𝜄 𝑗

𝜂Δ (𝜄𝑛+1 (𝛼 ′)) if 𝛼 = 𝜄𝑛 (𝛼 ′) for some 𝛼 ′ ∈ Im 𝜄 𝑗 \ Im 𝜄𝑖

𝜂Δ (𝛼) otherwise

We shall show 𝜎 preserves the strict order so that 𝜎 ∈ SOrd(Δ,H(Δ)). Suppose 𝛼 < 𝛽 ∈ Δ. Due to
the disjointness of

∐
𝑛∈ℕ

∐
𝑖 Δ𝑖 , the elements 𝛼 and 𝛽 must belong to the same case in the above

definition. Thus, we only have to check whether every case locally preserves the strict order:
• If both 𝛼 and 𝛽 are in Im(𝜄0 ◦ 𝜄𝑖), we know H(𝜄0),H(𝜄 𝑗), 𝜎 , and 𝜂Δ𝑖

are all <-preserving.
• For all other cases: 𝜂Δ and 𝜄𝑛 are <-preserving.

Then 𝑇 (𝜎) can be defined in terms of 𝜎 such that 𝜎 = 𝑇 (𝜎) ◦ 𝜂Δ:

𝑇 (𝜎) ≔ 𝜇Δ ◦ H (𝜎)
𝑇 (𝜎) preserves theH -action because the actions of free H -algebras (namely 𝜇Δ) are natural in Δ.

Identities. Suppose 𝑖 = 𝑗 and 𝜎 = id𝐹 (Δ𝑖) . We consider id = 𝑇 (id) ◦ 𝜂Δ, which uniquely determines
𝑇 (id). For 𝛼 ∈ Im(𝜄0 ◦ 𝜄𝑖), it suffices to consider the precomposition with 𝜄0 ◦ 𝜄𝑖 :

id ◦ 𝜄0 ◦ 𝜄𝑖 = H(𝜄0 ◦ 𝜄𝑖) ◦ id𝐹 (Δ𝑖) ◦ 𝜂Δ𝑖
= 𝜂Δ ◦ 𝜄0 ◦ 𝜄𝑖

Otherwise, if 𝛼 ∉ Im(𝜄0 ◦ 𝜄𝑖), the function id still agrees with 𝜂Δ because Im 𝜄𝑖 = Im 𝜄 𝑗 and only the
last case of the definition applies. We conclude id = 𝜂Δ and thus 𝑇 (id) = idΔ.

Composition. Suppose we have 𝜎 ∈ SOrdH (𝐹 (Δ𝑖), 𝐹 (Δ 𝑗)) and 𝛿 ∈ SOrdH (𝐹 (Δ 𝑗), 𝐹 (Δ𝑘)). We will
show 𝑇 (𝛿 ◦ 𝜎) = 𝑇 (𝛿) ◦𝑇 (𝜎), using repeatedly the fact that morphisms out of free H -algebras are
determined by their precomposition with 𝜂Δ.

• For 𝛼 ∈ Im(𝜄0 ◦ 𝜄𝑖), it suffices to consider the precomposition with 𝜄0 ◦ 𝜄𝑖 :
𝑇 (𝛿 ◦ 𝜎) ◦ 𝜂Δ ◦ 𝜄0 ◦ 𝜄𝑖 = H(𝜄0 ◦ 𝜄𝑘) ◦ 𝛿 ◦ 𝜎 ◦ 𝜂Δ𝑖

𝑇 (𝛿) ◦𝑇 (𝜎) ◦ 𝜂Δ ◦ 𝜄0 ◦ 𝜄𝑖 = 𝑇 (𝛿) ◦ H (𝜄0 ◦ 𝜄𝑖) ◦ 𝜎 ◦ 𝜂Δ𝑖

= 𝜇Δ ◦ H (𝛿) ◦ H (𝜄0 ◦ 𝜄 𝑗) ◦ 𝜎 ◦ 𝜂Δ𝑖

= 𝜇Δ ◦ H (𝛿 ◦ 𝜄0 ◦ 𝜄 𝑗) ◦ 𝜎 ◦ 𝜂Δ𝑖

= 𝜇Δ ◦ H (H (𝜄0 ◦ 𝜄𝑘) ◦ 𝛿 ◦ 𝜂Δ𝑗
) ◦ 𝜎 ◦ 𝜂Δ𝑖

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:22 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

= H(𝜄0 ◦ 𝜄𝑘) ◦ 𝛿 ◦ 𝜎 ◦ 𝜂Δ𝑖

• Let 𝛼 = 𝜄𝑛 (𝛼 ′). Except for the above case, 𝑇 (𝜎), 𝑇 (𝛿) and 𝑇 (𝛿 ◦ 𝜎) essentially only change
the index 𝑛 (for

∐
𝑛∈ℕ . . .) depending on the membership of 𝛼 ′ in Im 𝜄𝑖 , Im 𝜄𝑘 , and Im 𝜄 𝑗 :

Membership 𝜎 𝛿 𝛿 ◦ 𝜎
𝛼 ′ ∈ Im 𝜄𝑖 𝛼 ′ ∈ Im 𝜄 𝑗 𝛼 ′ ∈ Im 𝜄𝑘 𝑛 + 1 ↦→ 𝑛 + 1 𝑛 + 1 ↦→ 𝑛 + 1 𝑛 + 1 ↦→ 𝑛 + 1
𝛼 ′ ∈ Im 𝜄𝑖 𝛼 ′ ∈ Im 𝜄 𝑗 𝛼 ′ ∉ Im 𝜄𝑘 𝑛 + 1 ↦→ 𝑛 + 1 𝑛 + 1 ↦→ 𝑛 𝑛 + 1 ↦→ 𝑛

𝛼 ′ ∈ Im 𝜄𝑖 𝛼 ′ ∉ Im 𝜄 𝑗 𝛼 ′ ∈ Im 𝜄𝑘 𝑛 + 1 ↦→ 𝑛 𝑛 ↦→ 𝑛 + 1 𝑛 + 1 ↦→ 𝑛 + 1
𝛼 ′ ∈ Im 𝜄𝑖 𝛼 ′ ∉ Im 𝜄 𝑗 𝛼 ′ ∉ Im 𝜄𝑘 𝑛 + 1 ↦→ 𝑛 𝑛 ↦→ 𝑛 𝑛 + 1 ↦→ 𝑛

𝛼 ′ ∉ Im 𝜄𝑖 𝛼 ′ ∈ Im 𝜄 𝑗 𝛼 ′ ∈ Im 𝜄𝑘 𝑛 ↦→ 𝑛 + 1 𝑛 + 1 ↦→ 𝑛 + 1 𝑛 ↦→ 𝑛 + 1
𝛼 ′ ∉ Im 𝜄𝑖 𝛼 ′ ∈ Im 𝜄 𝑗 𝛼 ′ ∉ Im 𝜄𝑘 𝑛 ↦→ 𝑛 + 1 𝑛 + 1 ↦→ 𝑛 𝑛 ↦→ 𝑛

𝛼 ′ ∉ Im 𝜄𝑖 𝛼 ′ ∉ Im 𝜄 𝑗 𝛼 ′ ∈ Im 𝜄𝑘 𝑛 ↦→ 𝑛 𝑛 ↦→ 𝑛 + 1 𝑛 ↦→ 𝑛 + 1
𝛼 ′ ∉ Im 𝜄𝑖 𝛼 ′ ∉ Im 𝜄 𝑗 𝛼 ′ ∉ Im 𝜄𝑘 𝑛 ↦→ 𝑛 𝑛 ↦→ 𝑛 𝑛 ↦→ 𝑛

For example, if 𝛼 = 𝜄𝑛+1 (𝛼 ′) for some 𝛼 ′ ∈ (Im 𝜄𝑖 ∩ Im 𝜄𝑘) \ Im 𝜄 𝑗 (which is the third row),

𝑇 (𝛿 ◦ 𝜎) (𝜂Δ (𝜄𝑛+1 (𝛼 ′))) = 𝜂Δ (𝜄𝑛+1 (𝛼 ′)) = 𝑇 (𝛿) (𝜂Δ (𝜄𝑛 (𝛼 ′))) = 𝑇 (𝛿) (𝑇 (𝜎) (𝜂Δ (𝜄𝑛+1 (𝛼 ′))))

Natural transformation. The mapsH(𝜄0 ◦ 𝜄𝑖) form a natural transformation from 𝑈 H to 𝑈 H ◦𝑇
because, for any 𝜎 ∈ SOrdH (𝐹 (Δ𝑖), 𝐹 (Δ 𝑗)),

𝑇 (𝜎) ◦ H (𝜄0 ◦ 𝜄𝑖) = 𝜇Δ ◦ H (𝜎) ◦ H (𝜄0 ◦ 𝜄𝑖)
= 𝜇Δ ◦ H (𝜎 ◦ 𝜄0 ◦ 𝜄𝑖)
= 𝜇Δ ◦ H (H (𝜄0 ◦ 𝜄 𝑗) ◦ 𝜎 ◦ 𝜂Δ𝑖

)
= H(𝜄0 ◦ 𝜄 𝑗) ◦ 𝜎

Faithfulness. For parallel 𝜎, 𝛿 ∈ SOrdH (𝐹 (Δ𝑖), 𝐹 (Δ 𝑗)) such that 𝑇 (𝜎) = 𝑇 (𝛿),
H(𝜄0 ◦ 𝜄 𝑗) ◦ 𝜎 ◦ 𝜂Δ𝑖

= 𝑇 (𝜎) ◦ 𝜂Δ ◦ 𝜄0 ◦ 𝜄𝑖 = 𝑇 (𝛿) ◦ 𝜂Δ ◦ 𝜄0 ◦ 𝜄𝑖 = H(𝜄0 ◦ 𝜄 𝑗) ◦ 𝛿 ◦ 𝜂Δ𝑖

If H preserves monos, H(𝜄0 ◦ 𝜄 𝑗) is monic and 𝜎 ◦ 𝜂Δ𝑖
= 𝛿 ◦ 𝜂Δ𝑖

and 𝜎 = 𝛿 ; thus 𝑇 is faithful. □

Remark. We have optimized the formulations of Lemmas 3.8 and 3.9 for comprehensibility; if one
instead wishes to reduce the size of D, there are at least two possible modifications one can make:

• The functor in Lemma 3.9 was carefully constructed so that it works even if Im 𝜄𝑖 and Im 𝜄 𝑗 overlap,
so long as every Δ𝑖 is a decidable subobject6 of some fixed Δ. We simply chose Δ =

∐
𝑖 Δ𝑖 to

avoid discussing decidable subobjects in the statement of the lemma.
• It is possible to avoid the second copy of Δ in Lemma 3.8 by recycling the infinite buffer in
Lemma 3.9 (that is,

∐
𝑛∈ℕ

∐
𝑖 Δ𝑖). One can use the odd layers as the first copy and the even

layers as the second. This would lead to a more economic embedding, at the cost of clean lemmas.

Remark. One might wonder if we can replace {^} ⨿ Δ ⨿ Δ in the proof of Lemma 3.8 with our
constant displacements (Section 3.3.2), treating universe levels as constants and substitution as a
right-action of endomorphisms on those levels. Unfortunately this does not work because substitution
is not a right-action of endomorphisms: it preserves the strict order of levels, not of endomorphisms.

Theorem 3.10. Let (H , 𝜂, 𝜇) be any hierarchy theory, {Δ𝑖 }𝑖 be a small collection of small posets,
and Ψ be any non-empty set. There exists a displacement algebra D such that there is a functor 𝑇 out
of the full subcategory of SOrdH induced by the free algebras {𝐹H (Δ𝑖)}𝑖 and into the full subcategory
6A subobject 𝑆 of𝑉 is decidable if𝑉 is isomorphic to the coproduct of 𝑆 and its complement.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:23

of SOrdMD with one object 𝐹MD (Ψ). Moreover, there is a natural transformation from𝑈 H to𝑈MD ◦𝑇 ,
and if H preserves monos, 𝑇 is faithful.

Proof. Apply Lemma 3.9 to obtain a functor 𝑇1 and a natural transformation 𝜈 : 𝑈 H → 𝑈 H ◦𝑇1.
Choose any singleton poset {^}. Apply Lemma 3.8 with {^} and Δ =

∐
𝑛∈ℕ

∐
𝑖 Δ𝑖 to obtain a

functor 𝑇2 and a natural transformation 𝜉 : 𝑈 H → 𝑈MD ◦𝑇2. Let the functor 𝑇 be 𝑇2 ◦𝑇1 and the
natural transformation be 𝜉𝑇1 (−) ◦ 𝜈 . 𝑇 is faithful if both 𝑇1 and 𝑇2 are faithful. See the following
commuting diagram that puts 𝑇1, 𝑇2, 𝜈 , and 𝜉 together:

𝐹H (Δ𝑖) 𝐹H (Δ 𝑗)

𝐹H (Δ) 𝐹H (Δ)

𝐹MD (Ψ) 𝐹MD (Ψ)

𝛼

𝑇1 (𝛼)

𝑇2 (𝑇1 (𝛼))

H(Δ𝑖) H (Δ 𝑗)

H (Δ) H (Δ)

MD (Ψ) MD (Ψ)

𝑈 (𝛼)

𝑈 (𝑇1 (𝛼))

𝑈 (𝑇2 (𝑇1 (𝛼)))

𝜈𝐹 (Δ𝑖) 𝜈𝐹 (Δ𝑗)

𝜉𝐹 (Δ) 𝜉𝐹 (Δ)

□

Theorem 3.10 states that any hierarchy theoryH induces a displacement algebra D such thatH
embeds into the McBride monadMD : in other words, any universe-polymorphic type theory (in
the sense of our paper) can be seen as an instance of generalized “crude but effective stratification,”
subject to the technical conditions above. In particular, we only consider freeH -algebras, which do
not support contexts containing inequalities between non-variable level expressions (see Page 9).

4 OCAML IMPLEMENTATION AND AGDA MECHANIZATION
We have implemented an OCaml library mugen [RedPRL Development Team 2022a] for displace-
ment algebras, intended for use by anyone who wishes to adopt our generalization of McBride’s
“crude but effective stratification” in their type checker or proof assistant. Our library provides
a signature for displacement algebras and implements the derived level expressions and their
comparators for use in a type checker. Users may either provide their own displacement algebras
or use examples mentioned in Section 3.3. We are currently using our library in the development of
our experimental proof assistant algaett [RedPRL Development Team 2022b]. The mugen library
allows us to swap the underlying displacement algebra of algaett with very minimal changes to
the definition of its core language, parser, pretty-printer, and elaboration of levels; in particular, we
do not edit the type checker. This indicates that we have achieved a modular design.

We also have an Agda formalization of our construction of the generalized McBride monad MD

(Section 3.1); the fact that the examples in Section 3.3 satisfy the axioms of displacement algebras
and certain additional properties (bottom elements, joins, etc.); and a partial mechanization of
Section 3.4. Our Agda formalization is available at https://github.com/RedPRL/agda-mugen.

5 DISCUSSION
In this paper, we have presented a generic framework for universe hierarchies and universe
polymorphism, and proven that a generalization of McBride’s “crude but effective stratification” is
sufficiently expressive to capture all systems of universe polymorphism in our sense.

We are far from the first to note that universe hierarchies can be indexed by more general orders
than the natural numbers [Huet 1987; Kovács 2022; McBride 2002]; our universe-monomorphic type
theory (Section 2.1) simply codifies this observation, with the added generality that the hierarchy

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://github.com/RedPRL/agda-mugen

1:24 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

need not be well-founded. However, our description of universe polymorphism in terms of monads
on SOrd (Section 2.2) seems novel, and recasting McBride’s “crude but effective stratification” in
monads helped us identify a vast design space for universe hierarchies that includes exotic universe
levels such as negative numbers, rational numbers, computational reals, and even strings.

Many researchers have attempted to address the usability of universe hierarchies: the “hands-off”
approach of typical ambiguity was pioneered by Huet [1987] and Harper and Pollack [1991] and
implemented in systems such as LEGO, Coq, and Idris. Other systems, such as Agda, Lean, and
Matita, adopt more explicit forms of universe polymorphism. And other authors have considered
intermediate points in the design space; for example, Courant [2002] considers a system in which
one can hypothesize level variables 𝛼 ≥ ℓ bounded by arbitrary level expressions ℓ . A summary of
existing systems can be found in Kovács [2022, Section 6].

McBride introduced his “crude but effective stratification” out of frustration with existing systems,
in terms of both usability and implementability. His scheme belongs to the second category—it
requires users to write explicit levels—but with minimal syntactic burden. In other words, it avoids
constraint solving altogether without forcing users to write complicated universe level expressions.7
It is thus one of the easiest ways to support universe polymorphism, and we have shown that
it is also universal. Experience using our own library suggests that the simplicity of “crude but
effective stratification” has not been lost despite our generalization: we have built type checkers
parametrized by arbitrary displacement algebras, and the additional complexity of displacement
algebras can be completely outsourced to a dedicated library.

5.1 Future Work
Internalized level types and higher-ranked universe polymorphism. We believe there is limited

need for internalized universe levels8 or higher-ranked universe polymorphism for a cumulative
universe hierarchy. Moreover, a stratification between levels and regular terms should simplify
the implementation. (The notable example Agda does not have a fully cumulative hierarchy.)
However, it remains theoretically interesting to internalize these levels or consider higher-ranked
polymorphism. Recently, Kovács [2022] has constructed an inductive-recursive model of type theory
with internalized universe levels and Bezem et al. [2022] has given an account of higher-ranked
polymorphism. Both support user constraints between universe levels.

Non-free H -algebras. As we noted in Section 2.2, we could consider type theories indexed by
non-free H -algebras, which would account for level contexts with strict inequalities between level
expressions, not just level variables. Practically, this allows us to lift definitions in 𝔘𝛼∨𝛽 to some
𝔘1+𝛾 , and hence to remove universe indices from the syntax by moving them into the constraints.
Sozeau and Tabareau [2014] have explored a similar system but only with constraints of the

form (𝛼1 ∨ · · · ∨ 𝛼𝑛) < 𝛽 ; it is not immediately obvious which other fragments admit efficient
type checking and substitution algorithms. Bezem et al. [2008] describes an algorithm to handle
constraints of the form (𝛼 ∨ 𝛽) + 𝑛 ≥ 𝛾 over integers, and Bezem and Coquand [2022] present an
algorithm for join semilattices with successors. These advances in algorithms suggest different
fragments of non-free H -algebras that can nevertheless be implemented efficiently.

Partial displacement algebras. One might consider partial displacement algebras whose binary
composition • is not always defined. This would allow for indexed displacements for which compo-
sition is defined only on elements with matching indices, in much the same way that groups can be

7Note that an implementer may choose a complicated displacement algebra with a constraint solver to determine the order,
but this is not required by McBride’s system.
8One notable application of internalized universe levels is mechanized metatheory of type theories with universe hierarchies.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

An Order-Theoretic Analysis of Universe Polymorphism 1:25

generalized to groupoids. This could lead to a much simpler embedding of small H -algebras into a
displacement algebra because heterogeneous posets do not have to be embedded into a common
one. However, we might lose the simplicity of our monadic formulation of hierarchy theories.

Large universes. People have considered further extensions of the universe hierarchy by su-
per universes [Palmgren 1998], Mahlo universes [Setzer 2000], and higher-order universe opera-
tors [Takahashi 2022]. It is unclear how to integrate these into our framework.

Categorical semantics. Recently, Kovács [2022] developed a notion of family diagram to describe
poset-indexed universe hierarchies in categories with families [Dybjer 1996], a categorical frame-
work for the semantics of dependent type theory. We expect that we could define the categorical
semantics of our universe-monomorphic type theory in terms of these family diagrams; one poten-
tial benefit would be a streamlined presentation of our universe-polymorphic type theory in terms
of hierarchy-preserving morphisms of natural models [Awodey 2018; Newstead 2018].

Separating universe lifts and universe membership. In this paper we model universe hierarchies
as a single poset (𝐿, ≤) whose non-strict order ℓ ≤ ℓ ′ determines which lifts ⇑ℓ ′

ℓ
: 𝔘ℓ → 𝔘ℓ ′ exist

between universes, and whose associated strict order ℓ < ℓ ′ (defined as ℓ ≤ ℓ ′ and ℓ ≠ ℓ ′) determines
when a universe is an element of another universe 𝔘ℓ : 𝔘ℓ ′ . As we discussed in Example 2.15, this
prevents us from modeling the level-maximum operations of Lean and Agda, in which 𝛼 ≤ 𝛼 ∨ 𝛽

for the purposes of lifts, but neither 𝛼 < 𝛼 ∨ 𝛽 nor 𝛼 = 𝛼 ∨ 𝛽 for the purposes of membership.
Specifically, because we require level substitutions to preserve <, whenever ℓ ≤ ℓ ′ then we

either have ℓ = ℓ ′ or we have ℓ < ℓ ′ under all substitutions. One solution is to define ≤ (lifts)
and < (membership) as two distinct relations with the property that ℓ < ℓ ′ ≤ ℓ ′′ implies ℓ < ℓ ′′

(if 𝔘ℓ : 𝔘ℓ ′ ⊆ 𝔘ℓ ′′ then 𝔘ℓ : 𝔘ℓ ′′). After decoupling lifts and membership, we can ask for level
substitutions to (separately) preserve both relations, and then define ∨ as the join with respect to ≤.

Kinds of universes. Many proof assistants are equipped with either multiple parallel universe
hierarchies or special impredicative universes. Examples include the strict propositions (sProp)
in Agda, Coq, and Lean; the universe kinds in RedPRL [Angiuli et al. 2018]; and the support for
two-level type theory [Annenkov et al. 2017] recently added to Agda. Levels differ from kinds
in that type formers typically behave uniformly across universe levels, but non-uniformly with
respect to universe kinds. For example, whether Π-types are strict propositions depends on their
codomain only: if 𝐴 : 𝔘ℓ and 𝑥 :𝐴 ⊢ 𝐵 : sPropℓ ′ then

∏
𝑥 :𝐴𝐵 : sPropℓ∨ℓ ′ , but if 𝐴 : sPropℓ and

𝑥 :𝐴 ⊢ 𝐵 : 𝔘ℓ ′ then
∏

𝑥 :𝐴𝐵 : 𝔘ℓ∨ℓ ′ . Our current framework is not well-equipped to handle universe
kinds, but we believe it would be possible to account for these features if we decoupled the lifting
and membership relations as described above.

ACKNOWLEDGMENTS
We thankMichael Shulman and Jonathan Sterling for helpful conversations about hierarchy theories.
We thank Jad Ghalayini for suggesting fractal universe levels (Section 3.3.7) to us during WITS 2022
(Workshop on the Implementation of Type Systems), and Steve Awodey for suggesting integral
universe levels (Example 2.3).
This research was sponsored by the U.S. Air Force Office of Scientific Research under grant

number FA9550-21-0009. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the AFOSR.

REFERENCES
Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, and Jonathan Sterling. 2018. The RedPRL Proof

Assistant (Invited Paper). In Proceedings of the 13th International Workshop on Logical Frameworks and Meta-Languages:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:26 Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix

Theory and Practice, Oxford, UK, 7th July 2018 (Electronic Proceedings in Theoretical Computer Science), Frédéric Blanqui
and Giselle Reis (Eds.), Vol. 274. Open Publishing Association, 1–10. https://doi.org/10.4204/EPTCS.274.1

Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. 2017. Two-Level Type Theory and Applications. arXiv:cs.LO/1705.03307
http://arxiv.org/abs/1705.03307 Preprint.

Steve Awodey. 2018. Natural models of homotopy type theory. Mathematical Structures in Computer Science 28, 2 (2018),
241–286. https://doi.org/10.1017/S0960129516000268

Marc Bezem and Thierry Coquand. 2022. Loop-checking and the uniform word problem for join-semilattices with an
inflationary endomorphism. Theoretical Computer Science 913 (2022), 1–7. https://doi.org/10.1016/j.tcs.2022.01.017

Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. 2022. Type Theories with Universe Level Judgments.
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_56.pdf

Marc Bezem, Robert Nieuwenhuis, and Enric Rodríguez-Carbonell. 2008. The Max-Atom Problem and Its Relevance. In
Logic for Programming, Artificial Intelligence, and Reasoning, Iliano Cervesato, Helmut Veith, and Andrei Voronkov (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 47–61. https://doi.org/10.1007/978-3-540-89439-1_4

Edwin C. Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation.
Journal of Functional Programming 23 (2013), 552 – 593.

Thierry Coquand. 1986. An Analysis of Girard’s Paradox. In Proceedings of the First Annual IEEE Symposium on Logic in
Computer Science (LICS 1986). IEEE Computer Society Press, 227–236.

Thierry Coquand. 2013. Presheaf model of type theory. (2013). http://www.cse.chalmers.se/~coquand/presheaf.pdf
Unpublished note.

Thierry Coquand. 2019. Canonicity and normalization for dependent type theory. Theoretical Computer Science 777
(2019), 184–191. https://doi.org/10.1016/j.tcs.2019.01.015 In memory of Maurice Nivat, a founding father of Theoretical
Computer Science - Part I.

Judicaël Courant. 2002. Explicit Universes for the Calculus of Constructions. In Theorem Proving in Higher Order Logics,
Victor A. Carreño, César A. Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 115–130.
https://doi.org/10.1007/3-540-45685-6_9

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem
Prover (System Description). In Automated Deduction – CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer
International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Peter Dybjer. 1996. Internal type theory. In Types for Proofs and Programs (TYPES 1995) (Lecture Notes in Computer
Science), Stefano Berardi and Mario Coppo (Eds.), Vol. 1158. Springer Berlin Heidelberg, Berlin, Heidelberg, 120–134.
https://doi.org/10.1007/3-540-61780-9_66

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance without K. Proc.
ACM Program. Lang. 3, POPL, Article 3 (jan 2019), 28 pages. https://doi.org/10.1145/3290316

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for Computing Machinery,
New York, NY, USA, 492–506. https://doi.org/10.1145/3373718.3394736

Trang Ha and Valentina Harizanov. 2018. Orders on magmas and computability theory. Journal of Knot Theory and Its
Ramifications 27, 07 (2018), 1841001. https://doi.org/10.1142/S0218216518410018

Robert Harper and Robert Pollack. 1991. Type checking with universes. Theoretical Computer Science 89, 1 (1991), 107–136.
https://doi.org/10.1016/0304-3975(90)90108-T

Gérard Huet. 1987. Extending the calculus of constructions with Type:Type. (1987). http://pauillac.inria.fr/~huet/PUBLIC/
typtyp.pdf Unpublished note.

András Kovács. 2022. Generalized Universe Hierarchies and First-Class Universe Levels. In 30th EACSL Annual Conference
on Computer Science Logic (CSL 2022) (Leibniz International Proceedings in Informatics (LIPIcs)), Florin Manea and
Alex Simpson (Eds.), Vol. 216. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 28:1–28:17.
https://doi.org/10.4230/LIPIcs.CSL.2022.28

Per Martin-Löf. 1971. An intuitionistic theory of types. (1971). Unpublished preprint.
Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H.E. Rose and J.C.

Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73–118. https://doi.org/10.
1016/S0049-237X(08)71945-1

Conor McBride. 2002. Crude but Effective Stratification. https://personal.cis.strath.ac.uk/conor.mcbride/Crude.pdf Slides.
Conor McBride. 2011. Crude but Effective Stratification. https://mazzo.li/epilogue/index.html%3Fp=857&cpage=1.html
Clive Newstead. 2018. Algebraic models of dependent type theory. Ph.D. Dissertation. Carnegie Mellon University. https:

//www.math.cmu.edu/~cnewstea/thesis-clive-newstead.pdf
Erik Palmgren. 1998. On universes in type theory. Twenty five years of constructive type theory (1998), 191–204. https:

//doi.org/10.1093/oso/9780198501275.001.0001
RedPRL Development Team. 2022a. mugen. https://github.com/RedPRL/mugen

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/10.4204/EPTCS.274.1
http://arxiv.org/abs/1705.03307
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1016/j.tcs.2022.01.017
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_56.pdf
https://doi.org/10.1007/978-3-540-89439-1_4
http://www.cse.chalmers.se/~coquand/presheaf.pdf
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1007/3-540-45685-6_9
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1142/S0218216518410018
https://doi.org/10.1016/0304-3975(90)90108-T
http://pauillac.inria.fr/~huet/PUBLIC/typtyp.pdf
http://pauillac.inria.fr/~huet/PUBLIC/typtyp.pdf
https://doi.org/10.4230/LIPIcs.CSL.2022.28
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://personal.cis.strath.ac.uk/conor.mcbride/Crude.pdf
https://mazzo.li/epilogue/index.html%3Fp=857&cpage=1.html
https://www.math.cmu.edu/~cnewstea/thesis-clive-newstead.pdf
https://www.math.cmu.edu/~cnewstea/thesis-clive-newstead.pdf
https://doi.org/10.1093/oso/9780198501275.001.0001
https://doi.org/10.1093/oso/9780198501275.001.0001
https://github.com/RedPRL/mugen

An Order-Theoretic Analysis of Universe Polymorphism 1:27

RedPRL Development Team. 2022b. algaett. https://github.com/RedPRL/algaett
Anton Setzer. 2000. Extending Martin-Löf type theory by one Mahlo-universe. Archive for Mathematical Logic 39, 3 (2000),

155–181. https://doi.org/10.1007/s001530050140
Matthieu Sozeau and Nicolas Tabareau. 2014. Universe Polymorphism in Coq. In Interactive Theorem Proving, Gerwin Klein

and Ruben Gamboa (Eds.). Springer International Publishing, Cham, 499–514. https://doi.org/10.1007/978-3-319-08970-6_
32

Yuta Takahashi. 2022. Higher-Order Universe Operators in Martin-Löf Type Theory with one Mahlo Universe. https:
//types22.inria.fr/files/2022/06/TYPES_2022_paper_63.pdf

The Agda Development Team. 2022. The Agda Programming Language. https://wiki.portal.chalmers.se/agda/pmwiki.php
The Coq Development Team. 2022. The Coq Proof Assistant. https://www.coq.inria.fr
The HELM Team. 2016. Matita. http://matita.cs.unibo.it/index.shtml
The LEGO Team. 1999. The LEGO Proof Assistant. https://www.dcs.ed.ac.uk/home/lego/

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://github.com/RedPRL/algaett
https://doi.org/10.1007/s001530050140
https://doi.org/10.1007/978-3-319-08970-6_32
https://doi.org/10.1007/978-3-319-08970-6_32
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_63.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_63.pdf
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.coq.inria.fr
http://matita.cs.unibo.it/index.shtml
https://www.dcs.ed.ac.uk/home/lego/

	Abstract
	1 Introduction
	2 Generalized Universe Hierarchies
	2.1 Universe-Monomorphic Type Theory
	2.2 Universe-Polymorphic Type Theory
	2.3 Consistency of Generalized Universe Hierarchies

	3 Crude but Universal Stratification
	3.1 Algebras of Displacements
	3.2 Augmented Displacement Algebras
	3.3 Examples of Displacement Algebras
	3.4 Universal Hierarchy Theory

	4 OCaml Implementation and Agda Mechanization
	5 Discussion
	5.1 Future Work

	Acknowledgments
	References

